Nuova direttiva per la Legge E. R. contro l’inquinamento luminoso

7 dicembre 2013 alle 11:18 am | Pubblicato su Illuminotecnica | Lascia un commento
Tag: , , , , , , ,

L

a nozione di “inquinamento luminoso” spesso viene confusa con quella di “inquinamento luminoso astronomico”, che rappresenta solo una parte del problema e che definisce la riduzione della capacità di osservare i corpi celesti.
Fortunatamente ci sono Leggi, come la L.R. Emilia Romagna 19/2003, che cercano di affrontare il problema in maniera completa.
Negli ultimi anni ho partecipato attivamente al gruppo di lavoro che si è occupato di aggiornare la Legge di cui sopra e che ha portato alla recente pubblicazione della nuova Direttiva applicativa (BUR n.355 del 29/11/2013).

Non nascondo il fatto che sono estremamente soddisfatto per il lavoro svolto – anche se, da buon perfezionista, credo ci sia ancora molto da fare – ed in particolar modo sono felice che una legge di questo tipo per la prima volta si basi su indicazioni tecnico-scientifiche, anziché presentare numeri – per così dire – “tirati fuori dal cilindro”.
A cominciare dalla definzione stessa di inquinamento luminoso, che comprende la nozione di “inquinameno luminoso astronomico” vista prima e la nozione di “inquinamento luminoso ambientale”, inteso come luce artificiale che si disperde al di fuori delle aree a cui è funzionalmente dedicata, è emessa in misura maggiore alle reali necessità ed induce effetti negativi sull’uomo e l’ambiente. Per ulteriori approfondimenti su questo argomento, vi rimando alla presentazione sull’ inquinamento luminoso che ho portato al convegno Illuminotronica.

Senza entrare troppo nei dettagli – per cui rimando alla lettura del testo della Direttiva – riassumo brevemente le principali novità:

1) Sorgenti luminose

Finalmente, negli ambiti al di fuori delle Zone di Protezione, sarà possibile installare apparecchi illuminanti LED. Non è stato possibile – per motivi che sarebbe troppo lungo spiegare e che probabilmente sono al di fuori dell’umana comprensione – impedire di inserire un limite alla temperatura di colore utilizzabile (sono ammesse sorgenti con Tcc inferiore a 4000K): chiunque abbia familiarità con i concetti base dell’illuminotecnica sa infatti che la temperatura di colore è un parametro estremamente aleatorio e poco significativo (tanto che due sorgenti con distribuzioni spettrali completamente diverse possono avere però la medesima temperatura di colore). Tra l’alto la misura di questo parametro consente ampi margini e quindi in realtà possono essere certificate come 4000K sorgenti che possono andare dai 3500K ai 45000K e oltre.
Una “toppa” a questa indicazione poco significativa è stata inserita consentendo sorgenti con Tcc superiore a 4000K ma con acv inferiore a 0,60. Il parametro acv indica in soldoni il rapporto fra la parte di spettro che più influenza il ritmo circadiano e l’emissione totale: di questo parlerò più approfonditamente in un altro articolo.

Un discorso a parte meritano le Zone di Protezione, che comprendono zone naturali protette e zosservatori astronomici. Per queste zone vanno necessariamente utilizzate lampade a sodio alta pressione.
Senza nulla togliere a questa tipologia di lampade, non si comprende per quale motivo una Legge indichi (nel testo stesso, non solo nella Direttiva) una tecnologia e non un parametro. Ovvero: qual’è la base di questa indicazione? Si vogliono adottare sorgenti a spettro “stretto”? Bene, allora diamo un parametro che non consenta sorgenti ad ampio spettro (banalmente il CRI o una funzione che calcoli la compattezza dell’emissione spettrale).
Si vogliono adottare sorgenti ad alta efficienza? Bene: questo esiste già (vedi paragrafo successivo).
Si vogliono adottare solo sorgenti a scarica? Bene: diciamo solo sorgenti a scarica.
Se domani improvvisamente sparissero tutte le sorgenti al sodio alta pressione, tutte queste zone rimarrebbero al buio … tanto più che questa limitazione vale anche per i privati: provate ad andare al LeRoy Merlin e chiedere una plafoniera per esterni al sodio alta pressione!

2) Prestazioni energetiche di apparecchi ed impianti

La parte più innovativa del documento è sicuramente l’introduzione di specifiche minime per le prestazioni di apparecchi ed impianti, sulla scorta della proposta della valutazione energetica di cui ho già parlato in un articolo precedente.
Quante volte abbiamo parlato di apparecchi di illuminazione scadenti o di Amministratori che non sono in grado di comprendere l’effettiva efficienza di un impianto? Da oggi sarà più difficile proporre soluzioni di scarsa qualità, perché viene richiesta una valutazione delle prestazioni energetiche di apparecchi ed impianti (indipendentemente dalla tecnologia utilizzata o dalle modalità di riduzione di flusso/utilizzo dell’impianto).

IPEA IPEI
Come per gli elettrodomestici, la valutazione energetica rappresenta uno strumento importante al servizio degli Amministratori, i quali possono avere una panoramica immediata dell’efficienza del prodotto, sono in condizione di effettuare la comparazione dei diversi prodotti offerti su basi concrete ed infine hanno la possibilità di attribuire il giusto valore di mercato.

3) La figura del progettista

Un altro problema spinoso, di cui si è parlato spesso, è quello del riconoscimento delle capacità del progettista.
In mancanza di una legislazione nazionale che riconosca la figura del progettista illuminotecnico non si è potuto operare con indicazioni dirette, ma sono state aggiunte responsabilità e compiti cui possono sopperire solo dei professionisti del settore.
Non sarò più possibile ad esempio presentare un “calcolo illuminotecnico” facendolo passare come “progetto”: un progetto deve essere strutturato come indicato dal DPR 207/2010, presentare un piano di manutenzione, le valutazioni energetiche IPEA e IPEI ed infine allegare una relazione di calcolo dei consumi e dei risparmi energetici possibili.

Queste non sono indicazioni “facoltative” ma obbligatorie per tutte le Amministrazioni: per un progettista illuminotecnico questa è ordinaria amministrazione, ma per un elettricista o un produttore significa strutturare un ufficio progettazione dedicato.

3) Il superamento della norma UNI 11248:2012

Come già avevo indicato in un precedente articolo, l’aggiornamento della norma UNI 11248 si è rivelato un disastro sotto molti punti di vista e ha minato seriamente la credibilità dell’organo istituzionale addetto all’unificazione normativa. E’ una norma che si attiene a metodologie discutibili, così come la gemella dedicata alle gallerie e, sempre come la gemella, guidata dai dettami di individui che non sono disposti a confrontarsi.
Certo, lo stesso discorso vale per molte Leggi Regionali contro l’inquinamento luminoso: ancora non ho visto un documento scientifico o un dibattito o una pubblicazione di rilievo che dimostri numeri come il rapporto 3,7 o le 0,49 cd/klm. Però la revisione della Direttiva della L.R. Emilia-Romagna dimostra come un lavoro di discussione serio e sereno possa portare a buoni risultati.

Per questo motivo è stata presa la decisione (sicuramente coraggiosa) di riscrivere le indicazioni per la progettazione illuminotecnica, salvando ciò che di buono è presente nella norma UNI 11248:2012 (di questo ne va dato atto) e modificando il resto.
Sono molto orgoglioso dell’Allegato F e credo che possa rappresentare un buon punto di partenza per la revisione della normativa nazionale stessa (ricordo che tra l’altro l’Allegato F non impedisce di utilizzare la UNI 11248), ovvero una norma oggettiva, basata su parametri semplici e al contempo ragionevoli e tecnicamente validi. Questa parte ridà al progettista la facoltà di definire i parametri di influenza (al contrario della UNI 11248, che parte dal presupposto che il progettista sia incapace di svolgere il proprio lavoro) e soprattutto mette delle limitazioni alle responsavilità che lo stesso progettista può assumersi (ovvero: la classificazione urbanistica delle strade non può essere compito di chi si occupa dell’impianto dell’illuminazione, così come il fatto che non è possibile sopperire con l’illuminazione a buche o asfalti ammalorati).

Ultime considerazioni

Questa Direttiva non è la risposta a tutti i problemi, presenta ancora alcuni errori e sicuramente può essere migliorata.
Credo però che rappresenti un segnale importante – come si dice ora – di discontinuità.

Mi piacerebbe riflettere assieme sul testo della Direttiva e, perché no, magari proporre correzioni o aggiornamenti.

S.V.B.E.E.Q.V.

Matteo Seraceni

“Mi raccomando: questa volta cattivi, eh?”

—– O —–

AGGIORNAMENTO IMPORTANTE

Sulla base della discussione avvenuta sul gruppo facebook Italian Lighting Design, mi impegno a farmi da portavoce in Regione per eventuali modifiche alla Direttiva, che verranno discusse in maniera seria ed approfondita direttamente in questa pagina attraverso i commenti e il link al documento condiviso presente su google drive.

Sono ben accetti i contributi di chiunque voglia partecipare alla discussione: il documento condiviso è aperto e modificabile.
Chiedo a chi lo compilerà di indicare il proprio nome e cognome ed eventualmente, prima di cancellare parti altrui, segnare con un altro colore le eventuali modifiche.

Grazie mille.

Luce e follia (Cieli bui e UNI 11248)

22 ottobre 2012 alle 9:25 am | Pubblicato su Editoriali, Illuminotecnica | 37 commenti
Tag: , , , , , , ,

O

ttobre sarà ricordato – fra le altre cose – come il mese della legge di stabilità e del decreto “Cieli bui” che già ha infervorato le piazze e i maggiori talk-show italiani.
Pochi però sanno che, nello stesso momento in cui si parlava di ridurre o addirittura spegnere le luci nelle città per risparmiare qualche euro, veniva dato alle stampe l’aggiornamento della norma sull’illuminazione stradale (UNI 11248:2012) che fa da contraltare alle intenzioni del Governo e prescrive illuminazioni più alte di circa il 50% rispetto alla versione precedente.

Devo ammettere di aver sempre apprezzato il teatro dell’assurdo e, proprio in questi giorni, stavo pensando se l’inutilità dei nostri politici e – di rimando – delle istituzioni ad essi legate, non fosse in qualche modo un sottile stratagemma per trasformarci tutti in “rinoceronti” (tanto per citare un’opera a tema): e appunto, come nel testo di Ionesco, mi domandavo se anziché ostinarmi a rifiutare il qualunquismo imperante dovrei invece uniformarmi alla massa.
Purtroppo, anche in questo frangente, mi sento solo: c’è qualcun altro che pensa che questa sia pura follia?

Certo, lo so, viviamo nello stato delle banane.
Che colpo di teatro! Viene approvato un decreto che spegne le luci perché ormai i Comuni sono in braghe di tela e di contro esce una norma (quasi in contemporanea) che innalza la quantità di luce richiesta. Ovvero: ci sarà più luce di notte, ma per meno tempo. Poi tutti al buio.
E quindi il risparmio prospettato dal Governo viene nullificato sul nascere da una norma voluta da un’emanazione del Governo stesso.

Ma andiamo con ordine.
_

1) Cieli bui (?)

Facciamo chiarezza da subito: nessuno ancora ha visto il testo ufficiale del Decreto e quindi tutto ciò che si è detto fino ad oggi è pura masturbazione mentale.
Anche in questo caso sarebbe stato apprezzabile se i giornali avvessero avuto l’onestà intellettuale di porre la questione su di un piano speculativo, anziché sbattere in prima pagina titoli più o meno minacciosi del tipo: “Monti ci vuole lasciare al buio” (Il Giornale dell’ 11 ottobre. Articolo che tra l’altro si apre con la citazione felliniana “adesso c’è soltanto il sentimento di un buio in cui stiamo sprofondando” … mamma mia!).

Cielobuio è l’associazione che ha promosso l’iniziativa “Cieli bui”

Facciamo un passo indietro: l’illuminazione pubblica è una voce di spesa molto onerosa per i Comuni. Per questo motivo si dovrebbero progettare impianti che facciano la giusta luce (senza strafare) consumando meno energia possibile.
Ma il problema non è soltanto per i nuovi impianti. Chiunque si occupa di illuminazione sa che il sistema più semplice ed immediato per consumare di meno è quello di inserire qualche tipo di regolazione che consenta, nelle ore notturne in cui c’è meno affollamento nelle città, di ridurre il flusso luminoso degli apparecchi e quindi la potenza impegnata. Molte Leggi Regionali impongono questa regolazione.
Verrebbe da chiedersi perché ad oggi – nonostante la convenienza (e l’obbligatorietà) di questi interventi – i Comuni, anziché finanziare l’ennesima sagra della porchetta, non abbiano provveduto a migliorare i propri impianti. Verrebbe anche da chiedersi perché pochissimi Comuni si siano dotati di un piano energetico o comunque di un piano dell’illuminazione (anche questo obbligatorio per molte Regioni) che avrebbe garantito una pianificazione degli interventi e dei risparmi.
Se non si fa niente di tutto questo, appare più che evidente che l’unico modo di fare del risparmio subito è spegnere gli impianti.

Già alla luce di queste considerazioni la bozza di decreto appare in maniera diversa:

1. Per finalità di contenimento della spesa pubblica, di risparmio di risorse energetiche, nonché di razionalizzazione ed ammodernamento delle fonti di illuminazione in ambienti pubblici, con decreto del Presidente del Consiglio, su proposta del Ministro dell’ambiente e della tutela del territorio e del mare, di concerto con il Ministro dello sviluppo economico e delle infrastrutture, nonché con il Ministro dell’economia e delle finanze, da adottare entro . giorni dalla data di entrata in vigore della presente legge, sono stabiliti standard tecnici di tali fonti di illuminazione e misure di moderazione del loro utilizzo fra i quali, in particolare:

a) spegnimento dell’illuminazione ovvero suo affievolimento, anche automatico, attraverso appositi dispositivi, durante tutte o parte delle ore notturne;

b) individuazione della rete viaria ovvero delle aree, urbane o extraurbane, o anche solo di loro porzioni, nelle quali sono adottate le misure dello spegnimento o dell’affievolimento dell’illuminazione, anche combinate fra loro;

c) individuazione dei tratti di rete viaria o di ambiente, urbano ed extraurbano, ovvero di specifici luoghi ed archi temporali, nei quali, invece, non trovano applicazione le misure sub b);

d) individuazione delle modalità di ammodernamento degli impianti o dispositivi di illuminazione, in modo da convergere, progressivamente e con sostituzioni tecnologiche, verso obiettivi di maggiore efficienza energetica dei diversi dispositivi di illuminazione.

2. Gli enti locali adeguano i loro ordinamenti sulla base delle disposizioni contenute nel decreto di cui al comma 1. Le medesime disposizioni valgono in ogni caso come principi di coordinamento della finanza pubblica nei riguardi delle regioni, che provvedono ad adeguarvisi secondo i rispettivi ordinamenti.

Al di là di qualche “tecnicismo” è chiaro che il testo non dice assolutamente nulla e gli indirizzi di risparmio (affievolimento o spegnimento) sono metodologie che esistono fin dalla preistoria dell’illuminazione, come giustamente ha già fatto notare Giacomo Rossi nel suo blog.
Rimango pertanto stupito dal “caso mediatico” sollevato da “Cieli bui” … ma tutto va bene pur di non parlare dell’aumento delle tasse o dei soliti privilegi di alcuni italiani più uguali degli altri.
Detto questo, vorrei comunque fare alcune considerazioni:

  1. Perché viene preso di mira sempre il “punto finale” di consumo e nessuno parla del fatto che il prezzo dell’energia per l’illuminazione pubblica, in un anno, è aumentato di circa il 35%? Per quale motivo dobbiamo pagare noi per gli errori e l’incapacità dei fornitori di energia italiani? Perché non abbiamo un mercato veramente libero dell’energia e invece siamo sotto il giogo di un oligopolio imperante di persone che fanno il bello e il cattivo tempo in questo campo da circa 60 anni?
  2. Per quale motivo i sistemi di riduzione del flusso non vengono adottati come standard e, ancora oggi, occore richiedere accessori dedicati come pezzi “speciali”? Come dicevo prima, non solo questi sistemi spesso non vengono neppure presi in considerazione, ma il pensiero comune è quello di “illuminare il più possibile”, anche quando assolutamente non necessario: da un lato ci  sono progettisti incapaci che, per stare dalla parte dei bottoni, esagerano e dall’altro ci sono Amministratori che vedono gli impianti di illuminazione come merce di scambio per accrescere il loro prestigio o per raccogliere voti. Non mancano nemmeno quelli che gridano alla “maggiore sicurezza”, come se qualche lampione in più potesse far rinsavire gli ubriachi che si schiantano il sabato sera.
  3. Non so se voi ve ne siete accorti, ma siamo in piena recessione. Per quale motivo esistono sterminate lottizzazioni abitative o industriali abbandonate ma con lui accese per tutta la notte (vedi punto 2)? In questo caso lo spegimento non dovrebbe essere un obbligo, ma un dovere. Allo stesso modo mi chiedo per quale motivo chiese orrende (non parlo di Borromini, ma della chiesa in cemento di Roncofritto) rimangono illuminate per tutta la notte consumando energia pubblica (quando nemmeno pagano l’ICI). Ma questo dicorso vale per tante altre situazioni: se non c’è nessuno in quei luoghi, perché illuminare?
  4. In relazione al punto 3, mi rendo però conto che dar carta bianca ai Comuni nei riguardi degli spegnimenti significa mettere in mano una pistola a un adolescente problematico: il rischio è quello che, nel solco dell’indolenza tipica dei Comuni, lo spegnimento divenga una maniera facile per controllare i consumi e quindi, anziché la via lunga e tortuosa del piano della luce e del progetto di riqualificazione, venga scelta la via molto più breve del “tutto spento”. Non è pensabile di “spegnere” una città. Oppure, se questa è veramente l’intenzione, chiudiamo tutti baracca e ci mettiamo a vendere gelati.
  5. Il problema dei problemi: a chi sarà dato il compito di individuare le aree da affievolire o spegnere? Chi individua le tecnologie da adottare per ottenere maggiore efficienza? Come fa un Comune con un ufficio tecnico composto da un geometra e da un perito, che si occupano di problemi che spaziano dalle fognature alle costruzioni in zona sismica, a occuparsi non solo di illuminotecnica ma di pianificazione urbana? Ovvero, come fa un Comune – senza soldi per il patto di stabilità – a stanziare fondi per uno studio sull’efficientamento dei propri impianti? Il modo migliore di risparmiare è quello di pianificare gli interventi: purtroppo in Italia non è mai esistita una cultura urbanistica e di pianificazione, ed oggi ne stiamo pagando le conseguenze. Il risultato è quello prospettato al punto 4.

Non c’è quindi alcuna speranza?
Per fortuna abbiamo delle norme che possono mettere un freno a tutto questo spreco, vero?
_

2) Gerontocrazia al potere

Mia nonna, che ormai ha la sua bella età (anche se gli anni li porta molto bene), ormai ha qualche problema alla vista.
Non mi sorprende quindi che la nuova UNI 11248-2012, coordinata da un ultraottantenne, aumenti di circa il 50% la luce richiesta rispetto alla versione precedente.Sapete, io ero presente a una delle riunioni riguardanti l’aggiornamento della norma.
E sono rimasto affascinato dalla scelta effettuata dall’UNI per i coordinatori: uno di questi ha ammesso candidamente di “non aver mai progettato un impianto stradale” in vita sua. Un altro vegliardo, a cui veniva fatto presente che la CIE 191:2010 smentisce clamorosamente la pretesa di riduzione di una classe illuminotecnica per luce bianca, continuava a far vedere il diagramma di visibilità, come se c’entrasse qualcosa.

Per chi non ne sapesse nulla, riassumo la questione: la vecchia norma (UNI 11248:2007) riportava una tabella con indicate le “classi di riferimento” per ogni tipo di strada presente sul territorio nazionale. Questa categoria di riferimento doveva essere trasformata in “categoria di progetto” attraverso un’analisi dei rischi che poteva aumentare o diminuire le categorie.
Nella nuova norma l’analisi dei rischi è fatta solo “a scalare” (quindi la “categoria di progetto” non può essere aumentata, solo diminuita rispetto alla “categoria di ingresso” che prende il posto della “categoria di riferimento”). Fatto sta che la nuova norma definisce tutte le strade come “complesse” visivamente e presenta una “categoria di ingresso” superiore rispetto alla vecchia “categoria di riferimento”.
In pratica, quella che era una categoria ME4b (che richiede 0,75 cd/mq) nella vecchia norma è stata trasformata in una categoria ME3b nella nuova (che richiede 1,00 cd/mq).

La vecchia procedura per l’identificazione delle categorie di progetto e esercizio

La motivazione ufficiale è quella di “obbligare i progettisti a svolgere l’analisi dei rischi”: ovvero, o fai l’analisi o sei costretto a consumare di più. Però quanti progettisti (che ora appunto dovranno sottoscrivere a chiare lettere l’analisi dei rischi) secondo voi si prenderanno la briga di metterci la faccia e la carriera per declassificare una strada? Perché a parole siamo tutti splendidi, ma sappiamo benissimo che questo è anche il paese dei tribunali e delle cause perse e quindi il primo pirla che si schianta contro un palo è pronto a denunciare chiunque pur di non perdere punti sulla patente perché ubriaco. Io conosco più progettisti che alzano la categoria per sentirsi più sicuri piuttosto di progettisti che la abbassano.
Inoltre (ma forse sono io a essere in malafede) non è strano che una norma scritta da affiliati a una famosa associazione che raggruppa progettisti e produttori di corpi illuminanti sembra favorire proprio questi ultimi? In fin dei conti l’unico a guadagnarci è il venditore, perché con luminanze e uniformità superiori si è costretti ad installare molti più apparecchi.
Perché queste norme non vengono scritte (come tutte le restanti norme UNI) da gruppi di professionisti indipendenti?
Perché la norma italiana, anziché seguire la prUNI 13201-1, ha preso una strada diversa da tutti gli altri? Perché dobbiamo sempre essere “speciali”?
_

3) Più luce, meno luce

Eccoci quindi al paradosso: da una parte abbiamo un decreto che dice di risparmiare, usare “meno luce” e dall’altra abbiamo una norma che impone – in pratica – “più luce”.

Ho un sogno.
Sogno un paese in cui un Comune che vuole risparmiare energia chiede a uno staff di professionisti di ridefinire le priorità del territorio e non si accontenti di spegnere gli impianti fino a che non si sia raggiunto il “numero giusto”.
Sogno un paese in cui lo sforzo congiunto di Amministratori, pianificatori e progettisti possa stabilire le giuste strategie di efficienza, senza ricorrere a sedicenti “esperti” (che forse sono esperti di profitto ma di sicuro non di risparmio).
Sogno un paese in cui gli impianti di illuminazione siano progettati da progettisti illuminotecnici, non da elettricisti, da produttori o peggio da cantinari.

Ma la dura realtà è che siamo un paese di ignoranti supponenti e, di questo passo, andiamo sempre di più verso il baratro.
La ricetta contro la crisi è più semplice di quello che si pensa: anziché sotterfugi o norme ad hoc per i soliti noti, basterebbe applicare del buon senso e i regolamenti concordati a livello europeo.

Una buona progettazione (o riprogettazione) può garantire risparmi elevati e la messa a norma dell’impianto agli stessi costi degli spegnimenti + aumenti dell’illuminazione.
_

4) Una buona notizia

Vorrei chiudere in stile “Report” per parlare di una bella iniziativa: “Shine a Light on Lighting Design”.
E’ un sondaggio anonimo, promosso da un gruppo di studio autonomo (Chiara Carucci, Elena Pedrotti, Roberto Corradini e Marco Palandella) che si propone di monitorare e comprendere qual è la situazione professionale dei progettisti di illuminazione in Italia, conoscerne il punto di vista e avere uno specchio fedele della realtà professionale.
Sarà possibile accedere al sondaggio dal 15 ottobre al 25 novembre 2012. Terminata l’indagine, i dati ricevuti verranno analizzati statisticamente, i risultati complessivi saranno diffusi attraverso riviste specializzate.

L’iniziativa mi piace perché è un buon punto di partenza per capire la situazione dei professionisti dell’illuminazione italiana.
Spero che i promotori non si fermino alla sola pubblicazione delle risposte, ma si spingano anche a un’analisi approfondita del tema, soprattutto per quel che riguarda lo stato delle giovani leve del settore, perché ci sono ancora corporazioni che fanno di tutto per difendere i propri interessi.
E la cosa peggiore è che quelli che ci vanno di mezzo sono sempre i giovani: sottopagati, schiavizzati e senza nemmeno due soldi per fare un mutuo e mettere su famiglia.
Mi piacerebbe vedere le testimonianze reali di tanti giovani pagati due lire per far prosperare i grandi studi che si possono permettere ribassi inverosimili nelle gare oppure mi piacerebbe vedere un’inchiesta sulle associazioni, che dovrebbero fare l’interesse dei professionisti ma in realtà sono sponsorizzate dai produttori.

Ma questa, forse, è un’altra storia …

_

S.V.B.E.E.Q.V.

Matteo Seraceni

“Mi raccomando: questa volta cattivi, eh?”

Illuminotronica

29 settembre 2012 alle 4:01 pm | Pubblicato su Illuminotecnica | 1 commento
Tag: , , , , , ,

L

o so, il nome non è bellissimo, ma vorrebbe essere la crasi fra “illuminotecnica” ed “elettronica”.
Chi si occupa di illuminazione ormai – volente o nolente – sa che il futuro è rappresentato dalla tecnologia allo stato solido e quindi all’introduzione sempre maggiore di componenti elettroniche. Un buon illuminotecnico oggi non può più permettersi di essere all’oscuro di tutto ciò che riguarda l’elettronica ed in particolare la tecnologia LED.

Per questo motivo Assodel ha organizzato anche quest’anno un incontro per i professionisti del settore (ma anche semplici curiosi) a Padova dall’ 11 al 13 ottobre. Qui potete trovare maggiori informazioni riguardo al convegno.

www.illuminotronica.it

Ovviamente ci sarò anch’io, giovedì 11 ottobre, in veste ubiqua come relatore sul tema dell’influenza della luce sull’uomo (nello spazio Arena dalle 14.15 circa) e correlatore per la presentazione dell’implementazione all’interno del nuovo software Litestar 4D di Oxytech del sistema di classificazione energetica Hera Luce (Convegno Street & Urban lighting dalle 15.20 circa).

Per quel che riguarda l’influenza della luce sull’uomo, parlerò (in maniera molto semplice e concisa) dello studio che sto svolgendo in questo momento  e che riguarda l’influenza della luce artificiale notturna sull’uomo e sull’ambiente. La luce artificiale rappresenta un grande progresso della tecnica e ha consentito di migliorare notevolmente la nostra qualità della vita; non tutti sanno però che determinate caratteristiche della luce artificiale possono influire in maniera negativa sul nostro organismo e sull’ambiente, alterando ad esempio quello che è il nostro ritmo circadiano oppure trasformando completamente interi ecosistemi.
Negli anni scorsi si è parlato spesso di “inquinamento luminoso”, intendendo con questo termine solamente gli effetti dannosi sulla visione del cielo notturno. Oggi siamo ad un punto in cui diviene obbligatorio ampliare il significato di questo termine anche alla tutela dell’ambiente circostante.

Per quel che riguarda l’introduzione del sistema di classificazione energetica dell’illuminazione pubblica di Hera Luce all’interno del software Litestar 4D, sposso dirvi semplicemente che si tratta di una vera e propria rivoluzione nel mondo dell’illuminotecnica italiana. Non aggiungo altro, perché l’intenso lavoro fatto da Oxytech lascierà i fortunati partecipanti letteralmente a bocca aperta: mentre altri software concorrenti hanno cercato di virare verso il concetto di “user friendly” e quindi verso un concetto “amatoriale” dell’illuminotecnica (ovvero fare in modo che pure la zia Peppa si potesse fare il suo bel calcolino), qua invece parliamo di concretezza e strumenti realmente utili per chi fa illuminazione a livello professionale.

Volevo spendere ancora qualche parola riguardo Assodel e il Convegno Illuminotronica: al contrario di altri, non vi dirò di certo che il LED è la cosa più bella del mondo e la soluzione di tutti i nostri mali. Però è sicuramente la tecnologia del futuro e occorre fare chiarezza sulle caratteristiche, sui pregi e sui difetti di questa tecnologia. Assodel pubblica una bella rivista che parla di LED (che è molto più interessante e più strutturata di tante altre riviste del settore) e probabilmente il convegno di Padova rappresenta una delle poche occasioni in cui i tecnici del settore possono ritrovarsi e parlare di illuminotecnica.

Vi aspetto a Padova!

S.V.B.E.E.Q.V.

Matteo Seraceni

“Mi raccomando: questa volta cattivi, eh?”

Da non perdere

17 maggio 2012 alle 6:01 pm | Pubblicato su Comunicazioni di servizio, Illuminotecnica | 5 commenti
Tag: , , , ,

I

n questi ultimi tempi, lo ammetto, sono stato un po’ assente.
Ma l’assenza dal blog è stata compensata con la mia presenza altrove. Innanzitutto vi segnalo il numero di aprile di Luce & Design in cui ho parlato di alcuni progetti che sto portando avanti per Hera Luce e, a parte la mia simpaticissima sagoma situata fra Dante Cariboni e Massimo Villa, vale la pena leggerlo perché sono intervenuti fra gli altri personaggi del calibro di Roger Narboni, Susanna Antico e Pietro Palladino.
Non perdete neppure il prossimo numero (o addirittura abbonatevi – così facciamo una marchetta a Villa -) perché sarò presente con un articolo incisivo quanto mio malgrado sintetico sull’illuminazione LED stradale.

Ancora più importante è il corso in risparmio energetico nell’illuminazione organizzato dalla Regione Lombardia e dal dipartimento INDACO del Politecnico di Milano, in collaborazione con il Politecnico di Milano, ENEA, Green Building Council Italia, Hera Luce, Philips, in cui parteciperò come relatore il 5 giugno con la dissertazione dal lunghissimo titolo (beh … conoscendomi, non poteva essere altrimenti) “Proposta di un modello omogeneo di valutazione di soluzioni alternative trasversale rispetto alla tecnologia e alla nomenclatura propria dei costruttori: indice di efficienza energetica degli impianti di illuminazione pubblica”. Spero che parteciperete numerosi, perché il corso è molto bello (o almeno, questo è quello che mi ha detto Danilo Paleari).

Come potete vedere, non me ne sono stato con le mani in mano. Anzi, ci sono novità ancora più importanti e ancora più eclatanti che ora non vi posso svelare.
Rimanete connessi.

S.V.B.E.E.Q.V.

Matteo Seraceni

“Mi raccomando: questa volta cattivi, eh?”


Classificazione energetica per l’illuminazione pubblica

3 gennaio 2012 alle 4:38 pm | Pubblicato su Illuminotecnica | 21 commenti
Tag: , , , , , , , , , , , ,

C

ome ricorderete, per HERA luce ho seguito lo sviluppo di un progetto di Classificazione Energetica per apparecchi ed impianti di pubblica illuminazione. Sullo stesso argomento negli ultimi tempi ho anche scritto diversi articoli su diversi giornali (vi segnalo l’ultimo numero di INARCOS e l’ultimo numero di LEDin).
Finalmente da gennaio di quest’anno il metodo di Classificazione Energetica è stato reso pubblico sul sito ufficiale di HERA Luce.

Per consultare il documento ufficiale ed utilizzare il sofware di compilazione, occorre accedere all’area tecnica del sito di HERA Luce http://www.heraluce.it/area_tecnica/ e registrarsi inserendo e-mail e password. Una volta registrati, sempre all’interno dell’area tecnica, è possibile consultare il documento esplicativo del sistema di classificazione proposto (link Modello condiviso di certificati energetici) e collegarsi al software flash si calcolo (link Tool di compilazione).

Tool di compilazione

Per chi ancora non conoscesse il sistema di Classificazione Energetica per illuminazione pubblica rimando a quanto scritto un anno fa.
In breve, come per un frigorifero od un’abitazione, tramite un valore assoluto di livello prestazionale del sistema (considerato quindi sia in base all’apparecchio, sia in base all’impianto stesso), è possibile comparare in maniera diretta diverse tipologie di impianto ed avere un riscontro diretto della loro qualità. In questo modo chiunque può cogliere in maniera immediata la maggiore o minore efficienza dei sistemi adottati, grazie alla definizione di diverse classi energetiche che vanno da A+ a G (in maniera del tutto simile a quello che accade per gli edifici), dove la classe C indica l’adozione delle Best Practice del settore.
Non si sono più scuse: se il vostro impianto risulta in classe G va cambiato. E chiunque vi proponga un apparecchio in classe E probabilmente vi sta rifilando una fregatura.

S.V.B.E.E.Q.V.

Matteo Seraceni

“Mi raccomando: questa volta cattivi, eh?”

Segnala l’articolo:
_


Certificazione energetica di apparecchi ed impianti di Pubblica Illuminazione

17 novembre 2010 alle 7:43 pm | Pubblicato su Editoriali, Illuminotecnica | 15 commenti
Tag: , , , , , , , , , , , , , , , , , , , , , ,

Certificazione energetica di apparecchi e impianti di Pubblica Illuminazione________________________Q

uando l’anno scorso ho cominciato a scrivere articoli sugli apparecchi LED per illuminazione stradale non ero certo mosso da interessi di parte (non lavoro per un produttore, non sono astrofilo, non produco apparecchi miei), nè ero un pazzo visionario: volevo semplicemente mettere in chiaro quali erano i REALI pregi e difetti di questi apparecchi.
E per REALI non intendo “verosimili” o “probabili”, ma testati sul campo e quindi effettivamente riscontrabili. Il tempo mi ha dato ragione: basta guardare come oggi i produttori siano molto più cauti nella presentazione dei risultati conseguibili oppure come ci sia stato un generale dietrofront sulle “meraviglie” della luce bianca e dei LED. Tutto questo perché, al contrario dei tanti ed improbabili “esperti” spuntati come funghi in questi ultimi anni, ho avuto la fortuna di poter mettere le mani sulle apparecchiature e quindi conoscerne in dettaglio tutte le sfaccettature.

Lo scopo di quegli articoli (e in generale lo scopo generale di questo blog) era di mettere in discussione tutte le varie affermazioni mendaci ed improbabili che affollano giornali e siti internet.
Per questo sono stato tacciato di disfattismo, ignoranza, incompetenza; addirittura mi è stato intimato, in maniera più o meno velata, di smettere di scrivere e fare test.

Invece eccomi qua. Continuo col mio lavoro di ricerca (che non si ferma ai LED, come potete vedere e  si sta allargando anche a collaborazioni con l’università), per tentare di fornire gli strumenti adatti alla corretta valutazione degli impianti di Pubblica Illuminazione.
Il lavoro che presento in questo articolo (pubblicato tra l’altro anche sul numero di AIDI LUCE 4/2010) risale a circa un anno fa e cerca di fornire una serie di parametri utili alla definizione dell’efficienza di apparecchi ed impianti di pubblica illuminazione.

1) Strategie per la sostenibilità e Criteri Ambientali Minimi per l’illuminazione

La recente politica europea sui prodotti che consumano energia, volta a coniugare sostenibilità e competitività, andrà ad incidere fortemente sulle caratteristiche che i prodotti di illuminazione di nuova generazione dovranno possedere per poter essere commercializzati all’interno dell’Unione Europea. Tale politica pone al centro una knowledge economy, una economia della conoscenza, basata quindi non sul prezzo, ma su una serie di discriminanti tese a favorire una produzione di qualità, attenta all’ambiente e soprattutto all’intero ciclo di vita dei prodotti.
Gli strumenti operativi sviluppati in questo contesto, come la cosiddetta politica integrata di prodotto (IPP), hanno portato alla creazione di diverse direttive, quali ad esempio quelle per il riciclo (RAEE, ROHS), le direttive EuP (Energy using Products) ed il Programma d’azione Ambientale dell’Unione Europea.

Ovviamente la spinta principale per l’adozione di prodotti sostenibili può venire solo dalle Amministrazioni pubbliche (che rappresentano la fetta più importante del mercato) ed in questa prospettiva vanno sviluppati strumenti che possono guidare le scelte verso le migliori tecnologie presenti oggi sul mercato.
A livello nazionale sono in via di approvazione bandi di acquisti verdi che intendono favorire lo sviluppo di un mercato di prodotti e servizi a ridotto impatto ambientale attraverso la leva della domanda pubblica. All’interno del Piano Nazionale d’Azione sul Green Public Procurement (PAN GPP) sono pertanto stati definiti dei Criteri Ambientali Minimi (CAM)  in diversi settori che consentono di definire un acquisto “sostenibile” attraverso specifici requisiti, criteri premianti, riscontro sul mercato europeo e attenzione sull’intero ciclo di vita del prodotto.
Il documento dedicato ai CAM relativi all’illuminazione pubblica è in fase di definizione ed è pubblicato sul sito del Ministero dell’Ambiente e della Tutela del Mare. Questi criteri hanno lo scopo di promuovere l’adeguamento degli impianti di illuminazione pubblica esistenti o la realizzazione di impianti nuovi che, nel rispetto delle esigenze di sicurezza degli utenti, abbiano un ridotto impatto ambientale in un’ottica di ciclo di vita.

Per tener conto dei diversi tipi di interventi che possono essere attuati, i criteri sono stati suddivisi in tre sottogruppi:

  • Lampade HID e sistemi LED: relativi alla sostituzione di lampade a scarica e sistemi a LED in un impianto esistente; particolare attenzione va posta al mantenimento delle condizioni di sicurezza dell’apparecchio, in quanto la modifica rispetto alla configurazione iniziale comporta la perdita della marcatura CE originaria ed è quindi necessario che ad ogni modifica eseguita sia emessa una nuova dichiarazione CE, con assunzione di responsabilità da parte di chi ha eseguito le modifiche.
  • Corpi illuminanti: relativi alla sostituzione o all’installazione dei soli corpi illuminanti e pertanto alle caratteristiche minime e migliorative che gli apparecchi devono avere.
  • Impianti di illuminazione: relativi alla realizzazione di un impianto ex-novo; in questo caso, poiché i consumi dipendono non solo dalle sorgenti e dalle caratteristiche ottiche degli apparecchi ma anche dalla geometria di installazione adottata, è possibile individuare criteri che consentano le migliori prestazioni e il minor impatto ambientale. In particolare, è stato messo a punto un criterio di qualificazione energetica basato sul prEN 13201-5, con livelli di riferimento dedotti in seguito ad un benchmark delle soluzioni tecnologiche commercializzate nel mercato di illuminazione pubblica europeo nel 2009.

2) Proposta HERA Luce di certificazione energetica

Circa un anno fa HERA Luce mi chiese di sviluppare macroindicatori dell’efficienza reale di un impianto di illuminazione, che andassero oltre l’indicazione dell’efficienza media delle sorgenti. La mia idea è stata quella di sviluppare, in un’ottica di progressiva complessità, indicatori che dessero conto dello stato degli apparecchi illuminanti e quindi delle installazioni vere e proprie. Ne sono nate due schede, che definiscono una classe energetica in base alle norme tecniche in vigore, alle direttive europee ed EuP inerenti il risparmio energetico, alle norme di altri paesi membri riguardanti l’efficienza energetica della pubblica illuminazione e ai requisiti prestazionali definiti su una logica di Best Avaiable Technologies.
Per quanto riguarda il singolo apparecchio illuminante, l’indice di valutazione fa diretto riferimento alle prestazioni delle sue componenti principali, che contribuiscono a definire l’efficienza dello stesso: la sorgente luminosa, la componente ottica, l’alimentazione. Per ciò che riguarda gli impianti di illuminazione invece si fa riferimento sia all’apparecchio di illuminazione installato, sia alle caratteristiche al contorno che definiscono la geometria dell’impianto (come interasse fra punti luce e larghezza della strada).
Il fatto che questi coefficienti siano stati adottati anche all’interno dei CAM per la pubblica illuminazione non fa altro che confermare la bontà della mia intuizione ed il fatto che probabilmente la crisi economica e le vicissitudini di questi ultimi anni hanno portato alla richiesta di strumenti di valutazione che andassero al di là della corretta progettazione illuminotecnica e del rispetto delle leggi regionali.

Purtroppo le logiche di acquisto delle Amministrazioni Pubbliche non sempre sono tese al reale miglioramento degli impianti esistenti e al risparmio energetico; ad aggravare la situazione contribuisce l’insufficienza delle corrette informazioni a disposizione degli Amministratori, che per svolgere il loro mandato non debbono essere preparati ad affrontare ogni materia tecnica con rigore scientifico, e pertanto non riescono a discernere in maniera appropriata i dati forniti dai vari costruttori: risulta così abbastanza facile vendere prodotti non competitivi facendo leva sulla confusione degli interlocutori.
Lo sforzo maggiore è stato pertanto indirizzato nel trasformare questi dati in indicatori di facile lettura. Un prezioso aiuto è arrivato in questo senso dalla pratica ormai consolidata dell’ energy labelling (che oggi va dal settore dell’elettronica a quello degli immobili): queste etichette non solo rendono immediata la visualizzazione dei consumi e delle prestazioni, ma forniscono anche indicazioni circa il funzionamento e l’uso dei prodotti.
Come per un elettrodomestico, è possibile fornire una indicazione di massima sui consumi e le prestazioni di un apparecchio illuminante attraverso un indicazione del rendimento dello stesso; come per un immobile, un impianto di illuminazione può essere accompagnato da un documento che ne certifichi i consumi e le specifiche di funzionamento.

2.1) Apparecchi illuminanti

Data la moltitudine di apparecchi di illuminazione presenti oggi sul mercato e l’estrema eterogeneità di sorgenti a disposizione appare necessaria una revisione dei fattori che oggi si utilizzano per esprimere le caratteristiche prestazionali ed energetiche.
Per ottenere il minor consumo di energia ed al contempo massimizzare i risultati occorre valutare tutti i fattori che concorrono al buon funzionamento di un apparecchio; fattori come il rendimento di un apparecchio e l’efficienza luminosa delle lampade riflettono unicamente caratteristiche parziali e non esaustive. La necessità di poter esprimere l’efficienza in un unico termine ha portato quindi all’unione di questi due fattori in un coefficiente globale che tenga conto del flusso utile emesso dall’apparecchio e della reale potenza assorbita, espresso dalla relazione seguente:

Questo termine viene definito come Efficienza Globale di un apparecchio illuminante, ed è definito dal rapporto fra flusso nominale emesso dalle sorgenti nude presenti all’interno dell’apparecchio e la potenza reale assorbita dall’apparecchio (intesa come somma delle potenze assorbite dalle sorgenti e dalle componenti presenti all’interno dello stesso), il tutto moltiplicato per il rapporto fra flusso luminoso emesso dall’apparecchio e rivolto verso l’emisfero inferiore e flusso luminoso totale (Dlor)[1].
Va notato che, in caso di apparecchi a LED con flusso interamente rivolto verso l’emisfero inferiore, la formula è del tutto identica a quella dell’efficienza di sistema così come indicata dalla UNI 11356:2010.

Il parametro di riferimento utilizzato per la classificazione è costituito dall’ Efficienza Globale di riferimento, desunta dalle indicazioni normative e dalle BAT presenti oggi sul mercato; questo parametro viene diversificato in base all’ambito di applicazione di ogni apparecchio e di cui si fornisce qualche esempio[2]:


A questo punto viene definito un Indice Parametrizzato di Efficienza dell’ Apparecchio illuminante (IPEA) calcolato nel modo seguente:In base al parametro di riferimento vengono quindi definite le classi energetiche dell’armatura:

In base alla definizione data, è possibile osservare come si sia scelto di premiare apparecchi illuminanti  dotati di sorgenti molto performanti, di alimentatori elettronici e di ottiche con rese elevate. Si vuol fare inoltre notare come questo indicatore analizza semplicemente la qualità delle componenti; per avere una idea delle performace sul campo si rimanda all’indicatore di seguito indicato.

2.2) Impianti di Pubblica Illuminazione

Anche in questo caso i parametri di riferimento sono stati desunti dalla media di varie simulazioni di calcolo ed è stato scelto come criterio quello espresso all’interno della prEN 13201-5 e chiamato SLEEC (Street Lighting Energy Efficiency Criterion), differenziato in SL per la progettazione illuminotecnica in luminanza e SE per la progettazione illuminotecnica in illuminamento. Ad esempio, per una installazione stradale, lo SLEEC di progetto risulta pari a:

Per classi illuminotecniche che tengono conto dell’illuminamento, al posto della luminanza media mantenuta,occorre sostituire l’illuminamento medio mantenuto; per ambiti in cui non vi è una installazione lungo un percorso, all’interdistanza e alla lunghezza della strada è possibile sostituire un’area media di illuminamento. La logica seguita appare già in numerose leggi e proposte in ambito europeo, ma in questo caso i parametri sono stati diversificati in base alle diverse classi indicate dalla UNI 13201-2, di cui si fornisce qualche esempio[3]:

Viene quindi definito un Indice Parametrizzato di Efficienza dell’Impianto di illuminazione (IPEI) nel modo seguente:

Si vuol far notare l’aggiunta di un indice correttivo dovuta ad un problema rincontrato nel calcolo dello SLEEC: con questo indice potrebbe infatti capitare che date due installazioni aventi medesime condizioni al contorno, venga premiata quella con interasse minore. L’indice introdotto consente di ottenere la maggiore interdistanza fra i punti luce, premiando la più o meno puntuale aderenza ai valori minimi indicati dalla norma UNI 11248.
In base a questo indice vengono definite le classi energetiche per un impianto di Pubblica Illuminazione:

Il criterio proposto per gli impianti è in perfetta continuità con quanto esposto riguardo agli apparecchi illuminanti, poiché premia installazioni che adottano lampade performanti, alimentatori elettronici ed ottiche in grado di soddisfare al meglio le richieste di ogni ambito progettuale.

3) Schede di certificazione di apparecchi ed impianti

La definizione di indici di efficienza energetica è sicuramente uno strumento utile ma, come dimostra la scheda proposta da AIDI per gli apparecchi illuminanti a LED, occorre integrare questa informazione in dei report che illustrino in maniera esaustiva le principali caratteristiche di un sistema. Occorre fornire un valido strumento che presenti una parte generale comprensibile da chiunque ed una parte più specifica, dedicata ai tecnici, che possa essere da supporto nelle scelte inerenti l’acquisto di nuovi corpi illuminanti e l’installazione di nuovi impianti.
Per questo motivo HERA Luce mette a disposizione delle Amministrazioni due diverse schede che definiscono una classe energetica di confronto ed ulteriori specifiche che consentono la definizione puntuale ed esaustiva di tutti i parametri in gioco.
Tutte queste schede andranno a creare un database, che verrà presentato alle Amministrazioni, in maniera tale da caratterizzare apparecchi ed impianti con criteri univoci e confrontabili tra loro.

La prima scheda proposta riguarda gli apparecchi illuminanti: lo scopo è quello di fornire un quadro completo dell’apparecchio, riguardante sia le caratteristiche tecniche che prestazionali. La scheda proposta potrebbe inoltre fornire un supporto di partenza da cui sviluppare una catalogazione degli apparecchi con fati allineati per tutti i produttori: la migliore arma contro coloro che barano è sicuramente quella della trasparenza.

La seconda scheda riguarda gli impianti di Pubblica Illuminazione: in questo caso si tratta di una scheda che va a corredo del progetto di un nuovo impianto e si pone come valutazione dei consumi e delle modalità di manutenzione dello stesso.
Mentre la scheda precedente esamina l’apparecchio unicamente dal punto di vista delle prestazioni potenziali, con questa scheda viene valutato il suo effettivo rendimento sul campo; inoltre vengono forniti tutta una serie di dati che servono a caratterizzare l’impianto nel suo intero ciclo di funzionamento. L’intento è quello di fornire una prima indicazione sul Life Cycle Assessement delle tecnologie messe in campo, al fine di individuare l’effettivo valore dell’impianto dalla data di installazione a quella di dismissione.

All’intero di un lavoro di ampio respiro inerente la ricerca e l’efficientamento dei sistemi di Pubblica Illuminazione, le schede di certificazione che ho sviluppato rappresentano quindi uno strumento utile che attraverso parametri tecnici puntuali possono guidare il professionista nell’individuazione del prodotto migliore e definiscono un sistema semplice ed affidabile di certificazione con parametri di riferimento facilmente aggiornabili.
Le sfide del futuro vanno affrontate oggi, per garantire l’adozione delle tecnologie migliori e la massima efficienza degli impianti di Pubblica Illuminazione.

S.V.B.E.E.Q.V.

Matteo Seraceni

“Mi raccomando: questa volta cattivi, eh?”

 

Riferimenti:
[1] Si faccia riferimento a quanto espresso nel mandato CE M226 e nella CELMA “poposal for luminaire efficiency factor presentation” CEN TC 169 document N 418,2001; si veda ancora il NEMA standards publication No. LE5.
[2] Si faccia riferimento a quanto espresso nell’allegato VI del regolamento n. 245/2009 della Commissione Europea e a quanto indicato dai CAM presentati dal Ministero dell’Ambiente.
[3] Si faccia riferimento a quanto indicato dai CAM presentati dal Ministero dell’Ambiente e al Real Decreto 1890/2008 spagnolo.

Glossario:

  • ηa: efficienza globale di un apparecchio, intesa come rapporto fra flusso luminoso emesso dall’apparecchio e diretto verso il basso e potenza totale installata.
  • Φs: flusso luminoso emesso dalle sorgenti nude presenti all’interno dell’apparecchio illuminante.
  • Dlor: rapporto fra flusso luminoso emesso dall’apparecchio e diretto verso l’emisfero inferiore e flusso luminoso emesso dalle sorgenti nude.
  • ηr: efficienza globale di riferimento di un apparecchio illuminante (tabellata).
  • Wreali oppure Preale: potenza reale assorbita dall’apparecchio, comprensiva di tutte le componenti ausiliarie.
  • SL: SLEEC in luminanza per una particolare installazione.
  • SE: SLEEC in illuminamento per una particolare installazione.
  • Lm: luminanza media mantenuta, calcolata sull’area presa in esame, con un coefficiente di manutenzione MF = 0,80.
  • irif: interdistanza di riferimento fra due punti luminosi.
  • lmedia: larghezza media della carreggiata.
  • SLr: SLEEC in luminanza di riferimento (tabellato).
  • kinst: coefficiente correttivo che tiene conto della maggiore o minore aderenza ai valori espressi dalla UNI 11248 e premia le interdistanze maggiori a parità di condizioni al contorno.

Leggi anche:
Illuminazione stradale a LED - Parte 1
Illuminazione stradale a LED – Parte 2
Le principali grandezze illuminotecniche

Segnala l’articolo:
_


Illuminazione stradale a LED – 2^ parte redux

25 maggio 2010 alle 3:33 pm | Pubblicato su Editoriali, Illuminotecnica | 34 commenti
Tag: , , , , , , , , ,

Illuminazione stradale LED____________________________________________________________________________________________________________Illuminazione stradale LED

d un anno di distanza dalla stesura dei primi articoli sui LED sono cambiate molte cose: la crisi economica ha messo a dura prova il mercato degli apparecchi illuminanti e ha spazzato via molti produttori senza arte nè parte improvvisatisi specialisti di illuminazione a LED; inoltre l’arrivo di una nuova generazione di diodi e componenti ha permesso dall’inizio di quest’anno l’affacciarsi sul mercato di prodotti adeguati all’illuminazione stradale.
Altre cose però non sono cambiate per niente: la mancanza ormai cronica di norme che regolino in qualche modo la produzione dei diodi LED, uniformandone caratteristiche e prestazioni, così come mancano ancora standard di misura accettati per le prove in laboratorio sulla durata; non è cambiato nemmeno l’atteggiamento di molti venditori, capaci unicamente di confondere le idee con proclami e slogan degni di una campagna elettorale, senza però produrre mai prove sulla bontà dei propri prodotti.

Ad aggravare la situazione contribuisce l’insufficienza delle corrette informazioni a disposizione degli Amministratori, che per svolgere il loro mandato non debbono essere preparati ad affrontare ogni materia tecnica con rigore scientifico, e pertanto non riescono a discernere in maniera appropriata i dati forniti dai vari costruttori: risulta così abbastanza facile vendere prodotti non competitivi a livello di mercato, facendo leva sulla confusione degli interlocutori.
Questo stato è noto in economica come “asimmetria informativa”, e si ha quando una parte degli agenti interessati nello scambio economico ha maggiori informazioni rispetto al resto dei partecipanti e può trarre un vantaggio da questa configurazione.
“Se pensate che molti esperti usino gli elementi in loro possesso a vostro detrimento, non vi sbagliate. La sussistenza dell’esperto dipende proprio dal fatto che lui ha le informazioni e voi no. O dal fatto che vi sentiate talmente disarmati davanti alla complessità di un’operazione da non sapere comunque che uso fare delle informazioni, anche quando le aveste. O che siate ancora talmente in erba da non avere l’audacia di misurarvi con un esperto blasonato come lui. Se il dottore vi suggerisce l’angioplastica – nonostante alcune ricerche paiano indicare che fa ben poco nella prevenzione dell’infarto – difficilmente penserete che il vostro medico stia approfittando dell’asimmetria informativa per spillarvi qualche migliaio di dollari in combutta con il collega” da Steven D.Levitt e Stephen J.Dubner “Freakonomics. Il calcolo dell’incalcolabile”  Sperling & Kupfer Editori, 2006.

I miei articoli risultano così “scomodi” a molti perchè ho semplicemente cercato di ristabilire la centralità dell’ago della bilancia, mediante la pubblicazione di informazioni essenziali per capire il problema LED e diminuire una parte dell’assimetria: questo ovviamente da fastidio ai venditori perchè in un rapporto non più impari non è più possibile presentare prodotti non adeguati.
Ma parliamo di apparecchi a LED.

1) Apparecchi illuminanti a LED

L’errore più comune che si commette parlando di illuminazione a LED sta nell’equivocare fra “sorgente luminosa” ed “apparecchio illuminante”: una sorgente luminosa non è che una parte di un apparecchio di illuminazione e pertanto basare la comparazione solo su una componente porta a risultati parziali ed erronei. Come ben sa chi si occupa di illuminotecnica, un apparecchio illuminante scadente rimane scadente anche con la migliore sorgente luminosa installata; inoltre un cattivo alimentatore può compromettere il corretto funzionamento e ridurre drasticamente l’aspettativa di vita.
Appare doveroso quindi, una volta definite le peculiarità delle sorgenti luminose a LED, ampliare il discorso a comprendere tutte quelle parti che possono determinare una buona o cattiva illuminazione. Per fare questo ricordiamo che un apparecchio di illuminazione può essere definito un sistema che distribuisce, filtra o trasforma la luce emessa da una o più sorgenti e che include le parti necessarie per posizionare e proteggere le sorgenti ed i circuiti ausiliari per il corretto funzionamento del sistema. Possiamo pertanto pensare ad esso come una macchina, che ha lo scopo di trasformare l’energia elettrica in energia luminosa e di farlo nel miglior modo possibile.

Un apparecchio illuminante stradale a LED si compone di diverse parti (che generalmente non sono presenti nei corrispettivi a lampade a scarica) che vengono riassunte nello schema sottostante:

Componenti di un apparecchio LED

Si può quindi notare come in linea di massima non esistano componenti dedicati alla diffusione del flusso luminoso integrati nella carena: il gruppo ottico di un apparecchio di illuminazione a LED è formato dai LED stessi, disposti in vario modo ed eventualmente affiancati da ottiche applicate (ricordiamo che un modulo LED è costituito, oltre al diodo luminoso, di una base su cui sono disposti i componenti e di una lente applicata al di sopra di esso che direziona il fascio uscente).
Un’altra peculiarità consiste nella presenza di sistemi di dissipazione più o meno consistenti, ubicati generalmente nella parte superiore della carena, indispensabili per ridurre le temperature di esercizio dei diodi (tali sistemi non sono necessari negli apparecchi con lampade a scarica, in quanto l’ambiente in cui viene alloggiata la lampada è più che sufficiente per una corretta dissipazione). Il gruppo di alimentazione invece risulta alloggiato all’interno del corpo dell’apparecchio.
Ognuno di questi componenti influisce in maniera sostanziale sul funzionamento del sistema.

1.1) Alimentatore elettronico (driver)

I LED sono componenti a bassissima tensione, che devono essere alimentati in corrente continua, livellata e stabilizzata. Gli alimentatori per LED sono di tipo elettronico e provvedono a svolgere le funzioni sia di trasformatore che di convertitore.
Le sorgenti a LED hanno una vita media molto lunga e quindi occorre che anche i driver abbiano una mortalità molto bassa; ad oggi gli alimentatori elettronici hanno una mortalità media che va dall’ 1%  al 5% ogni 10.000 ore di funzionamento. Pertanto, nelle 50.000 ore di funzionamento attese per le sorgenti LED, avremo dal 5%  al 25% di mortalità sugli alimentatori: questo significa che durante il ciclo di vita previsto per un’armatura a LED è possibile prevedere la sostituzione del driver in 1 apparecchio di illuminazione su 10. Grazie a questo dato vengono già da subito annullate le pretese di manutenzione nulla prospettate da numerosi produttori.
Inoltre la durata di vita attesa per un alimentatore elettronico decresce in maniera esponenziale all’aumentare della temperatura di lavoro: poiché le sorgenti a LED possono produrre molto calore, occorre che il driver sia adeguatamente distanziato e separato dalla parte in cui sono alloggiati i LED, per impedire eventuali malfunzionamenti.
Un driver deve assicurare un livello di corrente costantemente stabilizzato per garantire una certa uniformità nelle prestazioni: per questo motivo dovrebbe risultare molto più “robusto” degli alimentatori elettronici standard; ad oggi solo i produttori che utilizzano specifiche militari riescono a garantire una resistenza adeguata agli sbalzi di tensione che possono verificarsi all’interno della rete di distribuzione elettrica (cosa che incide in maniera rilevante sui costi di produzione).
Infine va notato che nella maggioranza dei prodotti presenti sul mercato, l’efficienza degli alimentatori elettronici (definita come rapporto fra potenza assorbita dalla lampada e potenza totale assorbita dal sistema) difficilmente si attesta al di sopra di ηb =0,88 indicato come standard per le potenze nominali fino a 100W dal regolamento CE n. 245/2009 che riguarda le specifiche per la progettazione ecocompatibile. Questo ovviamente si ripercuote in un maggiore consumo del sistema a parità di flusso luminoso erogato.

1.2) Caratteristiche dei sistemi di dissipazione

Le sorgenti luminose a LED in realtà sono più “fredde” delle sorgenti a scarica tradizionali (che possono raggiungere valori ben al di sopra dei 2000°C durante il loro normale funzionamento), ma questo non li esenta dai problemi legati al surriscaldamento: un diodo LED infatti rimane pur sempre un semiconduttore ed in quanto tale molto sensibile alle alte temperature; inoltre sappiamo che gran parte delle caratteristiche prestazionali dipendono dalla temperatura di giunzione, e quindi a maggior ragione occorre prestare attenzione ai dispositivi di dissipazione.
Per capire le grandezze in gioco va ricordato che ad oggi solo il 15% circa della potenza elettrica consumata da una sorgente a LED viene trasformata in luce, mentre il restante 85% si perde in calore. Questo dato da una parte fa intravedere come i margini di miglioramento sull’efficienza siano ancora ampi per questa tecnologia, ma dall’altra evidenzia lo spreco e lo sviluppo incredibile di calore al suo interno.
Il gap fra temperatura di giunzione e temperatura ambiente si aggira attorno ai 50°C – 70°C e non potrebbe in alcun modo venire smaltito dalla piccola area dei diodi: per questo alla piastra su cui vengono saldati i LED viene affiancato un vero e proprio dispositivo di dissipazione alettato.
Ovviamente migliori sono i materiali utilizzati per la piastra e le alette e migliore sarà lo smaltimento del calore: purtroppo per contenere i costi non tutti i produttori adottano i migliori materiali a disposizione (come ad esempio potrebbero essere le piastre ceramiche) a discapito delle prestazioni finali.
Questa disposizione inoltre genera due “zone” estremamente sensibili, che vanno curate nell’assemblaggio dell’apparecchio. La prima riguarda la saldatura del diodo LED con la piastra sottostante: ad oggi in Italia gli stabilimenti certificati dai produttori di LED si contano sulle dita di una mano e non sempre gli assemblatori si affidano a questi; inutile dire che una saldatura difettosa (o comunque un non corretto allineamento) può pregiudicare il corretto trasferimento di calore e così ridurre prestazioni e vita utile. La seconda riguarda il collegamento fra piastra e dispositivo di dissipazione: anche in questo caso le connessioni devono essere curate ed affidabili.

Apparecchio LED con piastra di dissipazione superiore

Alcuni produttori hanno adottato dispositivi che possono limitare la potenza erogata in funzione della temperatura di esercizio, in modo da evitare pericolosi surriscaldamenti (come ad esempio avviene nel thermal managment dei processori per computer): questo però potrebbe portare ad improvvisi cali di flusso luminoso non dipendenti dalla volontà del gestore e quindi resta da capire come possano continuare ad essere verificate le prescrizioni illuminotecniche allorchè un apparecchio all’improvviso si ritrovi ad emettere meno luce di quella prevista.
A questo va sommato il fatto che generalmente la temperatura all’interno degli apparecchi illuminanti a LED è superiore a quella di riferimento di laboratorio a cui le loro prestazioni sono riferite e pertanto i dati forniti dai produttori risultano ancora parziali e non perfettamente aderenti alla realtà.

1.3) Caratteristiche fotometriche di un’armatura stradale

Gli apparecchi per illuminazione stradale devono soddisfare requisiti molto stringenti dal punto di vista fotometrico: il flusso luminoso deve essere indirizzato con precisione nelle direzioni ottimali per la visibilità sulla strada e deve invece essere schermato nelle direzioni che possono procurare fastidio ai conducenti.
Per valutare le caratteristiche illuminotecniche di un’armatura stradale occorre analizzarne il solido fotometrico, che rappresenta l’intensità luminosa normalizzata emessa dalla sorgente (espressa solitamente in cd/klm) lungo le varie direzioni spaziali. Il modo più utilizzato per rappresentare graficamente la forma del solido fotometrico è quello di sezionarlo secondo uno dei piani di riferimento: l’insieme delle curve così ottenute determina la cosiddetta “curva fotometrica”, che rappresenta, sotto forma di diagramma polare, la distribuzione delle intensità luminose di un apparecchio. Grazie all’analisi delle curve fotometriche è possibile valutare in maniera intuitiva il funzionamento di un apparecchio di illuminazione.

Nel caso di apparecchi destinati all’illuminazione stradale, è molto importante che la curva fotometrica invii la luce solo nelle direzioni interessate (lungo l’asse della strada e non al di fuori di essa) e con le giuste intensità luminose (distribuita la più uniformemente possibile).
Per fare questo ci si basa sul parametro di riferimento adottato dalla norma UNI 11248: la luminanza del manto stradale. La normativa impone valori tali da garantire un buon discernimento degli ostacoli e al contempo una uniformità d’illuminazione della sede stradale e dei dintorni.
La luminanza è una grandezza vettoriale che esprime la densità con cui un’intensità luminosa viene emessa da una superficie e per questo motivo rappresenta in maniera adeguata la sensazione visiva prodotta da una sorgente luminosa sull’occhio umano; dalla definizione segue che una sorgente che emette una certa intensità da una superficie molto piccola (come un diodo LED) produce sull’occhio una sensazione molto più forte di una sorgente analoga ma con una superficie molto più ampia (come una lampada tradizionale): questo fattore già rende conto di uno dei problemi principali degli apparecchi illuminanti a LED e cioè il controllo dell’abbagliamento.
Questa grandezza inoltre si distingue dall’illuminamento perché non definisce la componente “reale” di luce che arriva a terra, ma piuttosto una componente “soggettiva” che appare all’osservatore in funzione dell’angolo dal quale sta osservando l’oggetto e alla capacità della superficie illuminata (in questo caso l’asfalto stradale) di riflettere la luce.

Per le applicazioni stradali l’adozione della luminanza come parametro di riferimento significa definire la luminosità del manto stradale, come questa viene percepita dagli automobilisti e come questa può aiutare il compito visivo di un automobilista. Si può ottenere una buona visibilità degli ostacoli aumentando il contrasto di luminanza fra il manto stradale e gli ostacoli stessi, cercando di rendere massima la luminanza del manto stradale nella direzione di vista prevalente di un osservatore (che si trova compresa in un angolo molto ristretto, da -1,5° a 0,5° rispetto all’orizzonte): per un adeguato livello di luminanza in questa direzione, si devono privilegiare le direzioni di incidenza della luce molto radenti, capaci di generare verso il conducente una luminanza elevata grazie alla riflessione del manto stradale e in particolare alla sua componente speculare.
Per questo nella scelta di apparecchi efficienti rimane prioritaria la forma della curva sul piano C0-C180: il solido fotometrico di un apparecchio stradale avrà una forma simmetrica molto aperta, con il massimo di intensità per angoli molto elevati; allo stesso modo, per angoli troppo elevati, un’intensità molto elevata sarebbe causa di fenomeni di abbagliamento. Per questo motivo la curva fotometrica ottimale si presenta come simmetrica al piano longitudinale della strada, con intensità massime comprese fra i 60° e i 70° rispetto alla verticale (attraverso il calcolo della luminanza stradale è possibile stabilire che questa è fornita per circa il 45% per angoli compresi fra i 60° e 70°) e intensità molto ridotte oltre i 70°.
Questo parametro può venir letto direttamente dalla curva fotometrica oppure si può far riferimento all’apertura massima del fascio nel senso trasversale definita spread secondo il CIE 1976 (angolo che forma l’asse del fascio luminoso rispetto al 90% del valore massimo di intensità luminosa).

Visualizzazione grafica dello spread e throw

Uno spread attorno ai 60° può garantire un limitato abbagliamento affiancato al massimo di “allargamento” possibile che può garantire l’installazione del minor numero di apparecchi.
Ad angoli minori, l’intensità può diminuire sempre di più, poiché diminuisce la distanza fra sorgente luminosa e superficie; questo consente di ottenere anche una giusta uniformità di distribuzione della luce sul manto stradale: generalmente elevati coefficienti di uniformità portano a migliori risultati in termini di percezione visiva, pertanto strade con minore intensità luminosa ma con migliori parametri di uniformità sono senz’altro da preferirsi a vie molto luminose con scarsa uniformità. La norma UNI 11248 prevede il rispetto di due tipi di uniformità: la prima è calcolata come uniformità generale della carreggiata (U0), la seconda è definita come uniformità lungo la posizione dell’osservatore sulla carreggiata (Ul).

Per comprendere meglio quanto detto è opportuno fare alcuni esempi con apparecchi in commercio.

Fotometria di un apparecchio illuminante

Una fotometria di questo tipo ad esempio non può assolutamente essere utilizzata in ambito stradale, in quanto si evidenzia una totale mancanza di “allargamento” della curva fotometrica sul piano C0-C180 (indicato in rosso in figura: si nota che l’intensità massima non è attorno ai 60°, ma adirittura a 0°); inoltre l’intensità luminosa, anziché aumentare andando verso aperture più elevate, diminuisce: questo significa che avremo tantissima luce al di sotto dell’apparecchio illuminante, mentre molto poca nelle immediate vicinanze. La fotometria in questione pertanto non solo è errata dal punto di vista prestazionale (non consente grandi interdistanze), ma comporta una grande disuniformità di illuminazione sul piano stradale.
Nella fotometria seguente vediamo che la curva è molto allargata e che i valori di luminosità aumentano andando verso aperture più elevate: questo dovrebbe garantire una buona uniformità associata alla possibilità di avere interdistanze elevate fra i punti luce.

Fotometria di un apparecchio illuminante LED

Dal rilievo si nota però come la massima intensità luminosa si attesti attorno ai 75°, cosa che potrebbe comportare un effetto fastidioso dovuto all’abbagliamento. Un primo parametro di valutazione in questo caso può essere fornito dal parametro SLI (specific luminaire index), definito sempre dal CIE 1976 come indicatore dell’abbagliamento: per l’apparecchio in questione si nota infatti un SLI<4, che indica un moderato controllo dell’abbagliamento (in confronto ad uno SLI>4 che indicherebbe un elevato controllo dell’abbagliamento).
Sul piano C90-C270 invece risulta importante prevedere maggiori intensità luminose verso il lato strada, per evitare un’installazione su due lati della carreggiata o il ricorso a sbracci: l’introduzione di questa ulteriore asimmetria consente di riportare l’apparecchio sul bordo della carreggiata (come la classica applicazione su palo diritto), che è da preferire alle installazioni su sbraccio, in quanto meno problematiche dal punto di vista manutentivo.Anche in questo caso si può fare riferimento alla curva fotometrica oppure ai valori dei coefficienti di utilizzazione lato strada e lato marciapiede dell’apparecchio illuminante.
Lungo la direzione trasversale alla strada pertanto la curva fotometrica è asimmetrica, con direzione prevalente del flusso verso la strada nel caso di installazione lungo il bordo strada (ovviamente per installazioni a centro strada è opportuno che la curva sia simmetrica).
Questo non significa che tutto il flusso deve essere indirizzato in direzione della strada, poiché un parametro fondamentale della norma UNI 11248, il Surrounding Ratio, prevede che una parte della luce vada indirizzata anche in direzione del marciapiede. Poiché non sempre i diodi LED hanno un’efficienza luminosa paragonabile a quella delle lampade a scarica, alcuni produttori hanno pensato di “spingere” il fascio di luce solamente in direzione della strada, in modo da avere unaluminanza sufficiente: questo significa però che il coefficiente di utilizzazione lato marciapiede risulta insufficiente, come si può notare dal grafico sottostante.

Tabella dei coefficienti lato strada/marciapiede

Poiché il Surrounding Ratio prevede un coefficiente minimo di 0,5 questo significa che in generale si richiede che il coefficiente di utilizzazione lato marciapiede sia all’incirca pari a poco meno della metà del coefficiente di utilizzazione lato strada.
Ovviamente non bastano poche righe per esaurire un argomento così vasto come quello della giusta fotometria di un apparecchio illuminante; quanto detto vale solo criterio di massima per fare una prima selezione degli apparecchi, ma per una corretta valutazione rimane imprescindibile il calcolo illuminotecnico.

1.4) Caratteristiche del gruppo ottico

Spesso gli apparecchi tradizionali prevedono una certa possibilità di modificare le caratteristiche di emissione grazie a diverse posizioni di montaggio della lampada rispetto al riflettore, alle quali corrispondono solidi fotometrici con caratteristiche diverse: lo spostamento verticale da luogo a solidi fotometrici più o meno aperti in senso longitudinale rispetto alla strada, mentre lo spostamento orizzontale dà luogo a solidi più o meno asimmetrici in senso trasversale.
Ovviamente questa possibilità resta preclusa ad un apparecchio a LED, per i quali i produttori devono prevedere tanti modelli diversi per ogni curva fotometrica desiderata (e che quindi sono vincolati all’installazione prevista dal progetto illuminotecnico, senza poter essere spostati in situazioni differenti).
Questo limite incide in maniera pesante sulle possibilità di prefabbricazione delle componenti e quindi sui costi. Per ovviare a questo inconveniente e garantire al tempo stesso un’ottima resa i produttori di apparecchi a LED adottano prevalentemente le seguenti strategie:

  1. la prima soluzione consiste nel predisporre una piastra di LED in cui ognuno di questo abbia una diversa inclinazione, che possa portare ad un “mosaico” ottimale a terra; questa soluzione consente di sfruttare al massimo le potenzialità dei LED, senza ridurre l’intensità con lenti correttive, ma ovviamente è molto dispendiosa, in quanto ogni piastra deve essere un pezzo unico appositamente sagomato con diverse inclinazioni all’interno. Inoltre ogni diversa configurazione dell’ottica va pensata come un nuovo “pezzo” unico da mettere in produzione, con ricadute economiche notevoli poiché è possibile serializzare solo un discreto numero di configurazioni;

    Sistema ottico con LED inclinati

  2. la seconda soluzione, più economica, consiste nel predisporre diverse file di LED su una piastra “standard” orizzontale e successivamente applicare a questi differenti lenti e micro-lenti, che hanno il compito di diffondere la luce in modo appropriato; il prezzo contenuto è dovuto alla grande flessibilità data dall’utilizzo di diverse lenti applicate su una piastra di base comune a tutti i modelli (questo consente una grande standardizzazione dei pezzi). Lo scotto che si paga è quello di una riduzione del flusso luminoso, dovuta all’applicazione di lenti sopra ogni LED;
  3. Sistema ottico con microlenti

  4. la terza soluzione consiste sempre nel predisporre diverse file di LED su una piastra “standard” orizzontale, ma anzichè dotarsi di microlenti viene costruito attorno ad ogni diodi un piccolo rifrattore, che definisce una curva fotometrica come per una lampada tradizionale; anche in questo caso il prezzo contenuto è dovuto alla grande flessibilità, ma il rendimento di un’ottica di questo tipo rimane di poco superiore a quella di un’ottica per apparecchi tradizionali.

    Sistema ottico con rifrattori

Queste soluzioni sono strettamente legate alle caratteristiche del diodo LED, poiché a seconda del produttore, presenta dimensioni ed ottiche diverse; quindi una volta definita la forma della parte ottica, questa rimane ancorata ad un determinato diodo, che difficilmente sarà possibile sostituire, non solo con uno di marca diversa ma anche con le future evoluzioni dello stesso LED. In particolare ogni apparecchio illuminante LED è un prodotto unico, non replicabile e generalmente neppure “aggiornabile” (anche se di recente alcuni produttori hanno proposto apparecchi con ottiche ed alimentatori intercambiabile).
Un altro problema è dovuto al fatto che il singolo diodo è piccolo, ma per arrivare ai flussi delle lampade a scarica ne occorrono tanti: una delle principali caratteristiche del LED, quella della compattezza, si perde così nell’assemblaggio; mentre gran parte dei produttori stanno cercando di ottimizzare le dimensioni degli apparecchi e ridurre quindi imballaggi e merci di consumo, ci ritroviamo con apparecchi a LED grandi 2 volte o più un apparecchio tradizionale.
Infine va ricordato come l’ottica di un apparecchio di illuminazione a LED sia costituita da più diodi, ognuno dei quali contribuisce all’illuminamento di una certa parte della sede stradale: nel malaugurato caso che anche un singolo LED si rompa (oppure riduca in maniera sostanziale il proprio flusso oppure semplicemente sia stato saldato in una posizione leggermente diversa da quella prestabilita) la fotometria non può più sopperire al compito visivo richiesto, poiché incompleta; ad oggi, vista l’impossibilità di una sostituzione immediata dei singoli diodi, questo si traduce in una sostituzione completa dell’intera armatura.

2) Rendimento globale di un apparecchi illuminante

Data la moltitudine di apparecchi illuminanti e sorgenti a LED oggi presenti sul mercato, occorre definire un criterio di valutazione che possa accorpare gli elementi che concorrono ad una buona illuminazione: fattori come il rendimento di un apparecchio e l’efficienza luminosa delle lampade riflettono unicamente caratteristiche parziali e non esaustive.
In particolare il rendimento di un apparecchio (calcolato come rapporto fra flusso luminoso emesso dall’apparecchio e flusso originariamente emesso dalle lampade nude presenti in esso) non tiene conto dell’eventuale flusso luminoso disperso verso l’alto (e quindi non utilizzato per l’illuminazione del piano stradale) e della potenza assorbita dall’apparecchio. L’efficienza luminosa delle lampade (calcolata come rapporto fra flusso luminoso emesso dalla lampada e potenza elettrica consumata) d’altra parte è un’efficienza nominale, che quindi non tiene conto della reale potenza assorbita dalle altre componenti elettroniche presenti all’interno dell’apparecchio ed inoltre non fornisce indicazioni sul flusso disperso a causa di riflessioni interne, lenti, ecc…
Per questo motivo si è scelto di incorporare questi due fattori in un coefficiente globale che tenga conto del flusso utile emesso dall’apparecchio e della reale potenza assorbita dall’apparecchio.
Generalmente per un apparecchio di illuminazione stradale è fondamentale che tutto il flusso sia rivolto verso la metà inferiore della sfera luminosa (e questo è garantito ad esempio dal rispetto delle norme contro l’inquinamento luminoso) e per questo motivo, al rendimento si preferisce il rendimento di flusso luminoso rivolta verso il basso (definito dal parametro DLor).
Questo coefficiente rende inoltre conto del reale significato fisico di rendimento, inteso come rapporto tra lavoro compiuto da un sistema e l’energia fornita al sistema (anche se nel questo caso specifico si sono prese in considerazioni potenze anziché energie).
L’efficienza luminosa viene calcolata come rapporto fra flusso luminoso diretto verso il basso e potenza totale assorbita dall’apparecchio La potenza totale assorbita invece è quella comprensiva di lampade, alimentatore, perdite, ecc.. Questa corrisponde alla potenza che si potrebbe leggere “a monte” dell’apparecchio se andassi a misurarla mentre sta funzionando.
Infine, contrariamente a quanto Forcolini indica nel suo libro dedicato ai LED, il confronto va fatto in base alle migliori tecnologie oggi disponibili sul mercato (e non confrontando l’ultimo apparecchio LED in circolazione con un apparecchio mediocre con lampada a scarica).

In base a queste considerazioni, viene definito rendimento globale di un apparecchio di illuminazione:

Un apparecchio tradizionale che monta una lampada SAP di ultima generazione a 100W (di flusso luminoso pari a 10700lm), con alimentatore elettronico di rendimento pari a 0,93 e DLor pari al 80% (consideriamo fra i migliori apparecchi in circolazione) avrà un rendimento globale di:

η = 10700*80%/108 = 79 lm/W

Prendendo invece i dati di una famosa ditta produttrice di apparecchi LED abbiamo che un apparecchio che monta 100 LED alimentati a 350mA produce un flusso luminoso pari a 10000lm ed un consumo di 127W. Dagli eulumdat si può leggere un DLor pari a 85,7% (apparecchio con ottiche applicate). In questo modo abbiamo:

η = 10000*85,7%/127 = 67 lm/W

Per un altro apparecchio illuminante a LED abbiamo invece 84 LED alimentati a 350mA, che producono un flusso luminoso di 6417lm con un consumo di 110W In questo caso abbiamo un DLor pari al 100% (apparecchio senza ottiche applicate). Il rendimento risulta quindi:

η = 6417*100%/110 = 58 lm/W

In base a queste considerazioni è possibile affermare che il rendimento di un apparecchio illuminante a LED rimane leggermente al di sotto di un apparecchio tradizionale a scarica; le cose migliorano per potenze di lampada inferiore (l’efficienza di una lampada SAP a 70W è inferiore a quella di una lampada a 100W) ma ovviamente peggiorano per potenze superiori. Il rendimento ovviamente non ci dice nulla su come si comporterà un apparecchio in una determinata installazione (questo dipende dal tipo di fotometria, come indicato sopra); è possibile però affermare che a parità di costruzione della fotometria, un apparecchio con rendimento maggiore fornirà risultati migliori.
Questo significa che tutto si gioca nelle caratteristiche distintive di ogni apparecchio e quindi la qualità dell’illuminazione non può assolutamente essere determinata solo dalle caratteristiche della sorgente luminosa, ma va accuratamente valutata in base all’apparecchio illuminante nel suo complesso.

S.V.B.E.E.Q.V.

Matteo Seraceni

 

Leggi anche:

Illuminazione stradale a LED – 1^ parte

Illuminazione stradale a LED – 3^ parte

 

Segnala l’articolo:
____


Illuminazione stradale a LED – 1^ parte redux

24 febbraio 2010 alle 12:38 pm | Pubblicato su Illuminotecnica | 40 commenti
Tag: , , , , , , , , , , , ,

Illuminazione stradale LED____________________________________________________________________________________________________________Illuminazione stradale LED

a diverso tempo ormai si sente parlare dei “miracolosi” apparecchi di illuminazione a LED, capaci di garantire enormi risparmi e bassissima manutenzione; nella pratica però (vedi il disastroso esempio di Torraca) questi apparecchi spesso si sono dimostrati tutt’altro che efficienti.
Nonostante molti professionisti abbiano posto il problema con estrema serietà e correttezza, ancora oggi diversi produttori cercano di “fare i furbi” raccontando mezze verità, sperando che gli interlocutori non siano ferrati sull’argomento. Ad aggravare la situazione concorrono diversi organi di stampa, interessati più all’aspetto sensazionistico che produce questa nuova tecnologia anziché valutare il risultato pratico di queste applicazioni.
Per questo motivo mi sono sentito in obbligo (da addetto ai lavori quale sono) di approfondire le problematiche inerenti l’illuminazione stradale a LED: si parte dalla spiegazione di cos’è un LED fino ad arrivare alle simulazioni vere e proprie, per dimostrare come ad oggi un apparecchio a LED può al massimo sostituire un apparecchio che monta lampade al sodio alta pressione di medesima potenza.

Visto che sono stato accusato di essere contro “per principio” con questo articolo mi rivolgo a chi veramente vuole conoscere i numeri: si presenta pertanto come una riedizione dell’articolo apparso l’anno scorso ma con una maggiore attenzione ai dati e agli aspetti tecnici.

1. La tecnologia LED

LED è l’acronimo di Light Emitting Diode (diodo ad emissione luminosa) ed è stato sviluppato nel 1962 da Nick Holonyak Jr. Un diodo è il più semplice tipo di semiconduttore esistente: senza entrare troppo nello specifico, un semiconduttore è un materiale capace di far passare o meno elettricità in base alle caratteristiche del materiale da cui è composto.
Il LED è un semiconduttore creato da materiale poco conduttore (generalmente un composto di alluminium-gallium-arsenide), in seguito modificato (“dopato” nel gergo elettronico) per cambiare il bilanciamento interno tra le cariche positive e negative (da cui dipende la conduttività). La regione con cariche positive aggiunte è detta P-region mentre quella con cariche negative (costituite da elettroni) è detta N-region.
Quando nel diodo (o chip) non è applicato alcun voltaggio, gli elettroni di carica negativa trovano e riempiono i buchi (con carica positiva) nella zona di contatto, formando una giunzione detta anche depletion zone. In questa giunzione, tutti i buchi risultano riempiti e quindi formano una specie di barriera isolante in cui nessuna carica può circolare da una regione all’altra.

La giunzione all'interno di un diodo LED
Le cariche negative e quelle positive che vengono a contatto nella giunzione tra la P-region e la N-region e formano una zona in cui nessun elettrone riesce più a passare

Per eliminare la giunzione, bisogna far si che le cariche negative passino dalla regione N alla regione P e le cariche positive facciano l’inverso, connettendo ad esempio una batteria che, aumentano il potenziale elettrico, faccia muovere le cariche.

Movimento delle cariche
Una batteria collegata opportunamente ad un Led fa si che le cariche negative nella depletion zone si liberino e di fatto annullano la barriera tra le due regioni

Per capire cosa siano le cariche positive e negative di cui ho parlato sopra e di come queste possano produrre luce, occorre fare una breve digressione sull’atomo: la maggioranza degli atomi è composta da un nucleo (di protoni e neutroni) attorno cui si posizionano “nuvole” (orbitali più precisamente) di elettroni; su ogni orbitale, per il principio di esclusione di Pauli, si possono posizionare solo 2 elettroni. Generalmente un atomo ha un perfetto bilanciamento fra cariche positive e cariche negative.
Quando il materiale da cui è composto il semiconduttore viene drogato, uno degli elettroni degli orbitali più esterni viene a mancare, in maniera da creare una “lacuna” (e quindi anzichè neutro ora diviene positivo). L’atomo “drogato” è più instabile (e quindi ha maggiore energia); quando un elettrone riempie la “lacuna” l’atomo ridiventa stabile (e quindi a minore energia): il surplus di energia viene liberato sotto forma di fotone (cioè un pacchetto di energia che rappresenta la singola unità di luce).

Emissione di un fotone
Quando la carica negativa raggiunge quella positiva libera un fotone

In pratica un LED trasforma l’energia elettrica in energia luminosa (e viceversa).

Per quanto possa essere difficile comprendere il funzionamento del LED dal punto di vista fisico, questa descrizione è fondamentale per capire i pregi e (soprattutto) i difetti di questa tecnologia: ad esempio il superamento forzato della “barriera” neutra costituita dalla giunzione comporta un notevole surriscaldamento di questa zona (è una specie di “resistenza” all’interno del semiconduttore) e pertanto la “temperatura di giunzione” rappresenta un parametro fondamentale per la corretta gestione del LED.

I grandi produttori hanno dichiarato che nei prossimi anni investiranno gran parte dei loro capitali nello sviluppo delle apparecchiature a LED. Questa tecnologia rappresenta sicuramente il futuro dell’illuminazione in quanto garantisce numerosi vantaggi:

  • diminuzione della quantità di “materia” utilizzata per la loro produzione; rispetto ai prodotti tradizionali comporta quindi una riduzione degli ingombri e dei pesi, determinando una agevolazione nell’approvvigionamento, stoccaggio e trasporto dei materiali e nella produzione industriale;
  • ridotto contenuto di sostanze tossiche o nocive; le parti componenti dei LED sono facilmente disaggregabili, smaltibili e riciclabili (allo stesso livello dei normali diodi che si utilizzano in elettronica);
  • ridotta emissione di raggi UV ed IR;
  • lunga durata della vita media;
  • tecnologia in costante evoluzione.

Allo stato attuale esistono già buoni apparecchi di illuminazione a LED per gli ambiti ciclo-pedonali, illuminazione d’accento ed illuminazione artistica e di parchi.
Per quanto riguarda invece l’illuminazione stradale occorre sottolineare che questo è un ambito estremamente tecnico e richiede apparecchi molto performanti: generlamente oggi gli apparecchi a LED non riescono ad essere così performanti come i tradizionali apparecchi al sodio (soprattutto per quanto riguarda le potenze elevate), come verrà indicato nei paragrafi seguenti. Questo non significa che i LED non saranno mai così performanti come le lampade tradizionali: la tecnologia a LED si sta sviluppando in maniera incredibile (basti pensare che neanche 5 anni fa a stento si arrivava ai 50 lm/W) e per questo motivo è molto probabile che nei prossimi 10 anni gli apparecchi stradali con questa tecnologia sorpassino come prestazioni gli apparecchi tradizionali.
L’articolo va pertanto letto unicamente alla luce dello stato attuale della tecnologia a LED e non come negazione assoluta dell’applicazione di tale tecnologia all’illuminazione pubblica: la tecnologia LED ad oggi risulta BNAT (Best Not yet Avaiable Technology), cioè si pensa che sarà la migliore tecnologia in futuro disponibile per la pubblica illuminazione.

2. Caratteristiche dei LED

La lampada è una componente fondamentale di un apparecchio luminoso; per questo motivo occorre conoscere a fondo i parametri principali su cui basare le valutazioni delle lampade LED utilizzate.
Nell’illuminazione stradale generalmente oggi vengono utilizzati i cosiddetti “LED di potenza” (Power LED in inglese); la relazione seguente si basa quindi prevalentemente su questa tipologia di diodi LED (pur potendo essere estesa facilmente ad altre tipologie, come quelle multichip ad esempio).

2.1 Corrente di pilotaggio

I LED vengono pilotati con una corrente costante, per mantenere uniformi i valori di luminosità e temperatura colore; la corrente di pilotaggio ha infatti una diretta correlazione con diversi parametri, come il flusso luminoso emesso e la tensione all’interno del diodo (a livello intuitivo questo lo si può comprendere pensando che ad un aumento del potenziale elettrico corrisponde un aumento di particelle cariche spostate e quindi ad un aumento di fotoni emessi).

Per i LED di potenza le correnti possono variare da 100 mA a 1500 mA, con un valore tipico di 350 mA. Per valutare la potenza di funzionamento del singolo diodo occorre quindi moltiplicare la corrente per la tensione applicata, secondo la legge di Ohm: P = V * I.
La tensione applicata varia in base alla corrente secondo un grafico come quello seguente:

Grafico corrente-tensione per le ultime tipologie di power-LED

In questo caso si può vedere ad esempio come ad una corrente di 350 mA corrisponda un voltaggio di 3,2 V per un LED bianco e quindi una potenza assorbita di 1,12 W; per una corrente di 700 mA corrisponde un voltaggio di 3,4 V e quindi una potenza assorbita di 2,38 W. In realtà non è quindi vero quello che generalmente si vede stampato nelle caratteristiche delle sorgenti a LED e cioè che ogni singolo diodo assorba 1 W.

2.2 Flusso luminoso

Abbiamo visto che aumentare la corrente di pilotaggio significa aumentare il flusso luminoso emesso da un diodo LED: per questo motivo i produttori indicano il flusso luminoso emesso relativo ad una corrente di riferimento (generalmente pari a 350 mA); inoltre questo flusso è relativo ad una temperatura di giunzione di laboratorio pari a 25°C.
La variazione di temperatura di giunzione (descritta nel paragrafo successivo) e di corrente di pilotaggio comporta una notevole differenza nel flusso emesso.
Ad esempio, per lo stesso diodo LED visto sopra, abbiamo questo rapporto fra flusso emesso e temperatura di giunzione:

Grafico flusso luminoso - temperatura di giunzione
Grafico flusso luminoso – temperatura di giunzione per le ultime tipologie di power-LED

Il produttore indica per 350 mA e Tj=25°C un flusso luminoso pari a 114 lm.
Per temperature di giunzione che si aggirano attorno ai 70°C, vediamo che già il flusso si riduce del 10% circa e quindi si ottiene un flusso di circa 102 lm.

Il rapporto fra corrente di pilotaggio e flusso emesso è invece il seguente:

Grafico corrente di pilotaggio – flusso emesso per le ultime tipologie di power-LED

In questo caso si vede come a 350 mA il flusso rimanga invariato (e quindi, per una temperatura di giunzione Tj=70°C, un flusso di 102 lm); a 700 mA invece abbiamo un aumento del 170% circa (e quindi, sempre per una temperatura di giunzione Tj=70°C, un flusso di 173 lm).

A questo punto siamo quindi in grado di valutare l’efficienza luminosa nel due casi:

  • per I=350mA, Tj=70°C, abbiamo h=91 lm/W
  • per I=700mA, Tj=70°C, abbiamo h=73 lm/W

Per questo motivo è generalmente controindicato aumentare la corrente di pilotaggio al fine di aumentare il flusso luminoso (poiché alla perdita di efficienza si somma anche una diminuzione dell’aspettativa di vita del diodo LED, come vedremo in seguito).

2.3 Temperatura di giunzione

La temperatura di giunzione (indicata come Tj) risulta essere un parametro fondamentale per determinare il buon funzionamento di un LED.

Schema temperatura
Schema della dissipazione all’interno di un diodo LED

Con questo termine viene indicata la temperatura della giunzione che costituisce il nucleo del LED; la temperatura massima è determinata dal produttore del dispositivo in modo da porre un limite invalicabile per una vita operativa ragionevole del componente.
Questa temperatura è strettamente collegata al flusso luminoso emesso e alla durata: maggiore è la temperatura, maggiore la riduzione del flusso luminoso e minore la durata della sorgente LED.
Un diodo LED deve pertanto poter resistere alle alte temperature e i dispositivi di dissipazione a corredo devono essere dimensionati con cura.
Ad oggi non è possibile misurarla direttamente e le indicazioni dei vari produttori si riferiscono quindi a formule sperimentali che cercano per quanto possibile di riprodurre il comportamento della giunzione; senza entrare troppo nello specifico è facile capire che una misura non diretta può portare facilmente ad errori sperimentali, che si accumulano fino a rendere molto incerto il risultato finale. I dati inoltre si riferiscono a misure fatte in laboratorio, in condizioni al contorno stabili, che non tengono conto delle reali oscillazioni nei valori di temperatura e corrente presenti in un impianto reale.
Un dato di massima per definire la temperatura di giunzione può essere fornito della temperatura della piastra su cui il LED è saldato, poiché appare ovvio che la temperatura di giunzione sarà comunque superiore ad essa. Nelle installazioni su strada, in base a queste evidenze sperimentali, si registrano temperature di giunzione costantemente sopra i valori indicati dai produttori.
In definitiva risulta fondamentale l’apparato dissipativo posto a corredo dell’apparecchio di illuminazione: l’indicazione generale è quella di non considerare i dati forniti dal produttore come definitivi e di verificare con attenzione il metodo utilizzato nelle saldature dei diodi e la superficie e il materiale dei dispositivi di dissipazione.

2.4 Vita utile del LED

Per le sorgenti tradizionali storicamente si intende come “vita utile” il lasso di tempo intercorso dall’accensione al momento in cui una certa percentuale di lampade smette di funzionare.

Grafico Weibull per le apparecchiature elettroniche

Il parametro di riferimento è generalmente definito da una mortalità del 10% delle sorgenti luminose (indicata dalla sigla B10); una mortalità del 50% definisce invece la cosiddetta “vita media” (indicata dalla sigla B50). Per interpolare questi dati si utilizza la variabile casuale di Weibull (vedi il grafico soprastante), che definisce una curva di sopravvivenza delle sorgenti e che viene normalmente utilizzata in ambito industriale per tutte le applicazioni elettroniche.
Le sorgenti luminose a LED invece non tendono a spegnersi improvvisamente esaurita la loro vita utile: i diodi LED nel tempo diminuiscono gradualmente il loro flusso luminoso iniziale fino ad esaurirsi completamente in un periodo molto lungo (a meno di rotture improvvise ovviamente).
Per questo motivo occorre provvedere con termini di confronto che sono del tutto diversi da quelli utilizzati oggi.
Il parametro più utilizzato nella definizione di vita utile è stato definito da un gruppo industriale produttore di Power LED, la “Alliance for Solid-State Illumination Systems and Technologies” (ASSIST), la quale ha determinato che il mantenimento del 70% del flusso iniziale corrisponde al limite inferiore al di sotto del quale l’occhio umano percepisce una riduzione della luce emessa (e quindi si può supporre che una riduzione del flusso iniziale del 30% sia accettabile per la maggioranza delle applicazioni): per questo motivo viene definita come vita utile di un LED il tempo trascorso prima che venga raggiunto questo limite (indicato generalmente come L70 che sta per “lumen maintenance 70%”).

Per definire il mantenimento del flusso luminoso nel tempo esistono diverse metodologie; ad oggi la più usata risulta quella definita dallo standard IES LM-80 – Measuring lumen maintenance of LED light sources. Il metodo si basa sulla misurazione del flusso luminoso di una sorgente LED pilotata a seconda delle correnti definite dal produttore a tre diverse temperature (55°C, 85°C ed una terza a scelta) e per un periodo di tempo non inferiore a 6000 ore (con misurazioni almeno ogni 1000 ore). Questo test non dà specifiche riguardo all’eventuale previsione di decadimento e quindi di vita utile attesa al di fuori delle ore di prove effettuate: tutto quello che si può fare è fornire quindi un’interpolazione sui dati raccolti, come indicato nel grafico seguente:

Grafico durata vita
Grafico che rappresenta l’interpolazione per il calcolo della durata di un LED

In questo caso il produttore ha definito come tempo massimo di interpolazione un tempo pari a 6 volte il tempo realmente impiegato nel test, poiché è risaputo che l’incertezza sperimentale in questo genere di interpolazioni aumenta esponenzialmente con l’aumentare del tempo previsto: questo grafico pertanto è solo un’indicazione di massima, poiché in realtà l’incertezza è estremamente elevata a 150000 h. Se pensiamo ad una media di 4200 ore di funzionamento all’anno significa fare una stima su 35 anni di vita basandosi sul funzionamento di circa 1 anno e mezzo.

Basandosi su queste evidenze sperimentali si può osservare come estremamente importanti ai fini di una buona durata del diodo LED non siano solo la temperatura di giunzione e la corrente di pilotaggio, ma anche la temperatura dell’ambiente circostante e la capacità dissipativa della piastra su cui sono saldati i LED.
Dai seguenti grafici si può osservare come l’aumento della temperatura di giunzione, della temperatura dell’ambiente circostante o l’aumento della corrente di pilotaggio porti ad una drastica riduzione della vita utile (ovviamente tutti i risultati presentati sono solo estrapolazioni dei dati sperimentali).

Grafico vita corrente
Grafico rapporto durata vita- temperatura giunzione in funzione della temperatura ambiente
Grafico rapporto durata vita- temperatura giunzione 2
Grafico rapporto durata vita- temperatura giunzione in funzione della corrente di pilotaggio

Come già detto in precedenza, a livello sperimentale risulta abbastanza complicato definire una durata attesa di oltre 100000 h sulla base di sole 6000 h di funzionamento; inoltre mancano del tutto informazioni relative alla percentuale di sorgenti a LED il cui flusso risulta al di sotto dei risultati attesti, perché se è vero che quasi nessun diodo LED nelle prove sperimentali si spegne improvvisamente, è altrettanto vero che molti di questi presenteranno un flusso luminoso al di sotto delle curve di interpolazione presentate nei grafici sovrastanti.
Per questo motivo appare meritevole l’indicazione di alcuni produttori anche della percentuale di lampade che si attestano su valori di flusso luminoso al di sotto del delta dei valori attesi per la curva considerata (in questo modo tale percentuale di fallimento sostituisce la percentuale di mortalità delle vecchie lampade).
Dai grafici sottostanti si può osservare come passare da una percentuale di fallimento del 50% ad una del 10% comporti una restrizione notevole nei valori di aspettativa di vita utile.

Grafico rapporto durata vita- temperatura giunzione 1
Grafico rapporto durata vita- temperatura giunzione con B50
Grafico rapporto durata vita- temperatura giunzione 2
Grafico rapporto durata vita- temperatura giunzione con B10

I grafici presentati sono sicuramente più completi, in quanto definiscono due diverse versioni in base alla percentuale di fallimento attesa.
Inoltre è degno di nota il fatto che le curve sono state “tagliate” a 60000 ore di effettivo utilizzo poiché a detta dello stesso produttore, anche in presenza di dati statistici significativi, è opportuno limitare la durata di vita attesa a valori comunque certi (poiché sembra logico prevedere una durata minore e poi eventualmente sbagliarsi che prevederne una maggiore e poi accorgersi che il funzionamento non è quello atteso).

Questa lunga digressione sulla durata della vita ed il mantenimento del flusso risulta fondamentale per definire un corretto coefficiente di manutenzione di un apparecchio di illuminazione a LED.
Definito infatti il coefficiente di manutenzione (secondo CIE 154:2003  – The Maintenance of outdoor lighting systems)come U = LLMF x LSF x LMF, abbiamo che il coefficiente LLMF (Lamp Lumen Maintenance Factor) rappresenta il mantenimento del flusso luminoso a fine vita della sorgente luminosa (pari pertanto a 0,70 nel caso di L70), mentre LSF (Lamp Survival Factor) rappresenta la percentuale di sorgenti sopravvissute a fine vita (pari pertanto a 0,90 nel caso di B10; in questo caso la sorgente non si spegne ed ha solo un flusso inferiore a quello stabilito, ma agli effetti del calcolo appare prudente non tenerne conto o comunque pensare alla resa delle sorgenti difettose come pari a metà di quella sana. In questo caso allora per B10 si avrebbe LSF=0,95). Il parametro LMF (Luminaire Maintenance Factor) dipende invece dallo sporco accumulatosi sull’apparecchio, dalle condizioni atmosferiche e dall’intervallo di manutenzione; per un’installazione stradale tipica può aggirarsi attorno allo 0,90 – 0,95 con intervalli di manutenzione di 2 – 3 anni.
In base a questi dati risulta che il coefficiente di manutenzione è ben lungi dallo 0,80 utilizzato normalmente nei calcoli illuminotecnici per le applicazioni stradali.

2.5 Temperatura di colore

La temperatura di colore, la cui unità di misura è il Kelvin (K), ha come riferimento l’emissione del corpo nero o la curva di Plank; ricordiamo che in fisica un corpo nero è un oggetto che assorbe tutta la radiazione elettromagnetica incidente (e quindi non ne riflette) ed il cui spettro dipende unicamente dalla sua temperatura.
Lo spettro luminoso emesso da un corpo nero presenta un picco di emissione determinato, in base alla legge di Wien, esclusivamente dalla sua temperatura.

Spettro corpo nero
Spettro del corpo nero

Una sorgente reale, pur essendo abbastanza differente da un corpo nero, conserva questa proprietà e quindi in generale ad una temperatura bassa corrisponde ad un colore giallo-arancio, mentre un’alta temperatura corrisponde ad un colore azzurro.

Una sorgente a LED nasce come sorgente quasi monocromatica, il cui colore dipende dal materiale utilizzato nella sua fabbricazione; per le applicazioni stradali vengono utilizzati semiconduttori InGaN, che hanno spettro luminoso tendente al blu e che ad oggi determinano il massimo flusso luminoso possibile per un diodo LED.
Per ovviare a questo inconveniente e produrre emissioni su tutto lo spettro del visibile si ricorre alla cosiddetta “conversione della luminescenza”; questo metodo consiste nell’applicazione di uno strato di fosfori al diodo in modo da convertire parte della radiazione nelle porzioni di spettro rosso e verde mancante. La resa cromatica in questo caso viene penalizzata per la quasi assenza nello spettro emesso della componente rossa, come indicato nel paragrafo seguente.
Un metodo che produce risultati più soddisfacenti, ma che penalizza purtroppo le prestazioni del LED, è quello di applicare una combinazione di fosfori tricromatici, in modo da convertire tutta la radiazione nella banda del visibile.
In ogni modo la temperatura di colore del bianco prodotto dipende dalla quantità di fosforo usata nel rivestimento: la luce “bianca fredda” (o “cold white”) viene prodotta diminuendo la quantità di fosfori, la luce “bianca calda” (“warm white”) viene prodotta aumentandola.

Schema temperatura di colore
Schema delle varie temperature di colore

E’ facile intuire che la massima efficienza luminosa si ottiene applicando la minima quantità di fosfori possibile; in questo caso lo spettro emesso, definito “cold white” per la dominante blu (dai 6500 K circa in su), non appare molto indicato per l’illuminazione esterna per diversi motivi:

  • luce emessa fredda e con dominante bluastra
  • maggiore senso di abbagliamento
  • appiattimento dei contorni

Per ottenere sorgenti luminose con temperature di colore minori, denominate “natural white” (dai 4000 K circa ai 6000 K circa) o “warm white” (4000 K circa o meno), che determinano una migliore qualità della luce, occorre aumentare la quantità di fosfori applicati: questo fa calare drasticamente le prestazioni delle sorgenti LED e pertanto temperature di luce più calde hanno rese luminose fino al 40% inferiori.

2.6 Costanza del colore

Il procedimento di fabbricazione dei LED e di applicazione dei fosfori è un procedimento delicato e passibile di errori: per questo motivo si è scelto di suddividere le zone di appartenenza cromatica dei vari lotti prodotti in diversi settori (chiamati bin) definiti sul diagramma di cromaticità CIE 1931, sulla base di ellissi di MacAdam più o meno ampie (l’ANSI propone ad esempio un diametro di 4-step). In questo modo anziché cambiare il procedimento di produzione per ogni diversa tipologia di LED è possibile definire a posteriori l’area di omogeneità di colore.
Ovviamente il costo richiesto per diodi LED aumenta tanto più stringente si fa l’area di escursione dei bin.

Per stabilire la temperatura di colore della sorgente a LED si fa riferimento alla temperatura di colore correlata (CCT), costituita dai segmenti isotemperatura che incrociano la curva del luogo plankiano.
Ai fini dell’illuminazione stradale appare importante garantire una certa omogeneità nel colore delle sorgenti a LED, in quanto appare evidente che la forte escursione lungo la scala cromatica potrebbe generare un affaticamento nel compito visivo.

Le tabelle seguenti indicano una possibile suddivisione in bin per LED “cold white” (primo grafico) e “neutral white” e “warm white” (secondo grafico).

bin LED
Schema di BIN tipici per power LED

2.7 Indice di Resa cromatica

L’Indice di Resa Cromatica Ra (chiamato in inglese CRI, Color Rendering Index), è una valutazione qualitativa sull’aspetto cromatico degli oggetti illuminati e non va confusa con la temperatura di colore: due sorgenti con temperatura di colore identica possono avere un Ra diverso, come indicato dalla tabella seguente.
Questo parametro indica in che modo una sorgente è in grado di mantenere inalterato il colore di un oggetto da essa illuminato: varia in una scala da 0 a 100, dove 0 rappresenta il minimo e 100 indica il massimo di Resa Cromatica.
Il metodo, definito dallo standard CIE 13.3-1995, si basa sul calcolo delle differenze che una serie di campioni di colore presenta al variare dell’illuminazione della sorgente di riferimento rispetto a quella in esame: proprio per l’arbitrarietà sulla scelta dei colori presi in considerazione, questo indice rappresenta un valore abbastanza soggettivo. Può accadere infatti che sorgenti con lo stesso Ra emettano bande di colore molto diverse fra loro, oppure è possibile avere una sorgente con un elevato Ra che non abbia alcuna emissione dello spettro in diverse lunghezze d’onda (come appunto avviene per le sorgenti LED).

Spettro di emissione tipico di un LED a luce bianca
Spettro di emissione tipico di un LED a luce bianca

La migliore emissione possibile per l’occhio umano dovrebbe corrispondere ad una emissione continua lungo tutto lo spettro, senza picchi o avvallamenti.
Come si può notare dal grafico soprastante, che definisce l’emissione di una tipica sorgente a LED, lo spettro non è continuo, perché presenta un gap enorme sull’emissione del rosso; una lampada a ioduri metallici ad esempio ha uno spettro più continuo e quindi una valenza cromatica sicuramente maggiore, come si può vedere dal grafico sottostante.

Spettro di una lampada ad alogenuri metallici
Spettro di una lampada ad alogenuri metallici

Questa intuizione sperimentale viene ribadita dal rapporto CIE 177:2007, nel quale la commissione internazionale per l’illuminazione ha stabilito che il CRI non può essere applicato alle moderne sorgenti bianche a LED. Si può leggere infatti che il parametro di resa cromatica “generalmente non può venire applicato per definire un indice di classificazione di resa cromatica di una serie di sorgenti luminose in cui siano inserite sorgenti bianche a LED” e che “l’applicazione dell’indice di resa cromatica correntemente definito dalla CIE (secondo lo standard del 1995) è notevolmente limitata se riferita alle sorgenti bianche a LED. Infatti è possibile ad esempio che sorgenti storicamente ritenute con CRI elevato possano venire visualmente classificate al di sotto di sorgenti bianche a LED che in realtà avrebbero CRI minore”.
Alla luce di queste evidenze sperimentali risulta necessario riconsiderare l’indice di resa cromatica come parametro di valutazione per le sorgenti LED; in particolar modo si consiglia di seguire le seguenti raccomandazioni:

  1. il CRI può essere un parametro da tenere in considerazione se la restituzione fedele dei colori è fondamentale per il compito visivo considerato;
  2. il CRI generalmente andrebbe valutato solo tra sorgenti con la medesima temperatura colore;
  3. differenze sotto ai 5 punti di valutazione non sono significative per la distinzione di due diverse sorgenti luminose (ad esempio due sorgenti rispettivamente con CRI 80 o CRI 84 sono essenzialmente identiche);
  4. occorre valutare sempre la resa degli apparecchi a LED dal vivo e di persona.

3. Valutazioni sull’Indice di Resa Cromatica e la norma UNI 11248

In base alla nuova normativa il progettista illuminotecnico assume un’importanza fondamentale nella corretta valutazione ed individuazione delle soluzioni più opportune per ogni ambito progettuale.
La norma UNI 11248 individua le prestazioni illuminotecniche degli impianti di illuminazione e, per far questo, delinea una categoria illuminotecnica di riferimento per ogni tipologia di strade.
In base all’analisi dei rischi ed ai parametri di influenza considerati dal progettista illuminotecnico, viene quindi definita una categoria illuminotecnica di progetto, grazie alla quale verrà effettuato il progetto di massima per ogni zona di studio presa in considerazione.
Infine, in base al flusso di traffico effettivo presente nelle varie ore della giornata, è possibile definire più categorie illuminotecniche di esercizio su cui effettuare eventuali sconti di categoria.

Poiché le sorgenti a LED generalmente non presentano un’efficienza paragonabile alle sorgenti a scarica, diversi produttori cercano di colmare il divario basandosi sul prospetto 3 della norma UNI 11248, il quale afferma che sorgenti con Ra>60 possono usufruire di uno sconto di categoria nell’analisi dei rischi.
Questi valori però, come cita la norma stessa “sono forniti a titolo informativo”, cioè non hanno valore normativo e possono pertanto essere modificati o ampliati in base alle necessità riscontrate dal progettista illuminotecnico. Ogni progetto illuminotecnico rappresenta un caso a sé e quindi risulta impossibile definire “a priori” la possibilità o meno di uno sconto di categoria.

Occorre capire che non è il coefficiente di resa cromatica a definire una migliore visione notturna, ma la luce bianca (che, in via convenzionale, viene ricondotta ad un Ra>60); abbiamo già visto le problematiche insite nella valutazione dell’Indice di Resa Cromatica per una sorgente bianca a LED ed inoltre il “buco” presente attorno ai 500 nm potrebbe non garantire una capacità scotopica paragonabile ad esempio a quella delle sorgente a ioduri metallici (come indicato in seguito).
Negli ultimi anni infatti diverse università ed agenzie di ricerca hanno dimostrato che sorgenti a luce bianca possono comportare un miglioramento delle prestazioni in ambito notturno, ma solo per la visione periferica.

Riguardo a questo ultimo punto appare doveroso un ulteriore approfondimento: è noto che il CIE ha definito due curve di ponderazione, riportate nel disegno sottostante, che misurano l’efficienza visuale a varie lunghezze d’onda nel caso di luminosità diurna (curva bianca – visione fotopica) e notturna (curva nera – visione scotopica).
Dal grafico si può notare come la visione fotopica abbia un picco corrispondente alle lunghezze d’onda di una luce giallo-verde, mentre quella scotopica di una luce azzurra: lo spostamento del massimo di sensibilità, dovuto all’utilizzo prima dei coni e poi dei bastoncelli è denominato effetto Purkinije.

Curve di visibilità
Curve di visibilità

I bastoncelli, che funzionano in condizioni di bassa visibilità, vedono meglio il blu di quello che fanno i coni, i quali possono vedere luce profondamente rossa, luce che per i bastoncelli appare nera. Lo possiamo sperimentare di persona prendendo due pezzi di carta colorata rossa e blu: in condizioni di buona luminosità, risulta più luminoso il pezzo rosso, passando all’oscurità l’effetto si inverte.
A livello internazionale, è stata scelta la curva fotopica per “mediare” i valori del flusso luminoso uscente dalle singole sorgenti.
Questo però porta a due problemi: il primo è dovuto al fatto che l’illuminazione stradale si colloca in un ambito che non è né fotopico né scotopico e che viene appunto chiamato mesopico (definito generalmente dall’intervallo di luminanza compreso fra 0,001 e 3 cd/mq); il secondo, strettamente legato al primo, è quello che in tale ambito la valenza della curva di ponderazione fotopica non è del tutto esatta e vale solo per angoli di visione estremamente piccoli.
Negli ultimi anni sono stati condotti diversi studi sull’illuminazione mesopica, di cui alla fine dell’articolo sono forniti alcuni esempio che probabilmente confluiranno nel documento di studio denominato CIE TC1-58.
Grazie a questi studi è emerso che la sensibilità spettrale dell’occhio non cambia quando i livelli di illuminazione raggiungono l’area mesopica per angoli visuali ristretti e quindi la curva fotopica V(λ) rimane una misura valida per la visione foveale a basse luminanze . Invece, in situazioni in cui le informazioni vengono catturate anche da una visione periferica (angolo visivo di 15°-20°), i bastoncelli assumono un ruolo dominante: in questi casi una lampada con forte componente blu dello spettro luminoso apporterebbe miglioramenti alla visione periferica e quindi all’identificazione di oggetti fuori dal campo foveale, soprattutto col diminuire della luminosità.

Angoli di visione notturna
Angoli di visione notturna

I modelli di curve mesopiche proposti da questi studi e da successive modificazioni indicano un aumento relativo della luminosità percepita con sorgenti a forte componente blu dello spettro (con alto indice S/P e cioè rapporto fra ponderazione scotopica e ponderazione fotopica) per la visione periferica, così come indicato dalla tabella sottostante:

Tabella di visibilità mesoscopica
Tabella di visibilità mesopica

Questa tabella ci dice ad esempio che, per una lampada a sodio alta pressione (HPS), anzichè 1 cd/mq, in condizioni mesopiche vengono percepite 0,927 cd/mq; per una lampada a luce bianca, come quelle agli alogenuri (MH) anzichè 1cd/mq si percepiscono 1,18 cd/mq.
Ancora più evidente è una tabella in cui, in base ai vari rapporti S/P  (per una lampada ad alogenuri ed un LED indicativamente si considera S/P=2,35) vengono indicate le divergenze percentuali fra la luminanza percepita secondo il “vecchio” modello fotopico ed il nuovo “mesopico”:

Tabella di visibilità mesoscopica in percentuale
Tabella di visibilità mesopica in percentuale

Questo schema ci dice due cose:

  1. Una sorgente a luce bianca diviene fondamentale allorché ci siano precise esigenze di visione periferica (visibilità dei pedoni sul marciapiede e degli ostacoli laterali)
  2. Lo sconto di categoria proposto dalla UNI 11248 può venire proposto solo per basse luminanze (inferiori alle 0,75 cd/mq e quindi solo per strade inferiori alla categoria ME4): infatti, come si legge dal grafico, nel caso di una luminanza di 1 cd/mq di riferimento (cioè seguendo l’attuale ponderazione fotopica) abbiamo per una lampada al sodio 0,927 cd/mq (riduzione del 7%) che non giustifica l’aumento di una categoria, così come proposto dalla UNI 11248 e, ancora più importante, per una lampada a luce bianca 1,18 cd/mq (aumento del 18%) che ancora non giustifica lo sconto di categoria. Solo per una luminanza di 0,3 cd/mq abbiamo per una luce bianca 0,39 cd/mq (aumento del 30%) e quindi una giustificazione dello sconto di categoria.

Sarebbe pertanto auspicabile che la UNI 11248 venisse modificata in modo tale da prendere in considerazione questi parametri, piuttosto che fornire generiche informazioni riguardo alle possibili declassificazioni (visto che nella corrispettiva norma prEN UNI 13201:1 non vi è traccia dei parametri indicati nella tabella della UNI 11248).

Mi rendo conto che il tema è molto spinoso e pertanto risulta difficile esaurirlo in queste poche righe (cui spero di sopperire presto con un articolo dedicato): quanto detto vale unicamente come spunto di riflessione per tutti coloro che pretendono l’immediata declassificazione delle strade in qualsiasi condizione e per qualsiasi categoria illuminotecnica.

S.V.B.E.E.Q.V.

Matteo Seraceni

Leggi anche:
Illuminazione stradale a LED – 2^ parte redux

Illuminazione stradale a LED – 3^ parte

 

Riferimenti:

Normativa sistemi LED per l’illuminazione:

  • CEI EN 62031:2009 – Moduli LED per illuminazione generale – Specifiche di sicurezza
  • CEI EN 61347-2:2007 – Unità di alimentazione di lampada – Parte 2-13: Prescrizioni particolari per unità  di  alimentazione  elettroniche  alimentate  in  corrente  continua  o  in corrente alternata per moduli LED
  • UNI EN 13032-1:2005 – Luce  e  illuminazione  –  Misurazione  e  presentazione  dei  dati  fotometrici  di lampade e apparecchi di illuminazione
  • CIE 127:2007 – Measurement of LEDs
  • Draft IEC 62504 – Terms and definitions for LEDs and LED modules in general lighting
  • Draft IEC 62560 – Self-ballasted  LED-lamps  for  general  lighting  services  >50  V  -  Safety specifications
  • Draft IEC 62612 – Self-ballasted LED-lamps for general lighting services >50 V – Performance requirements
  • Draft IEC 61341 – Method  of  measurement  of  centre  beam  intensity  and  beam  angle(s)  of reflector lamps – including LED
  • IES LM – 79-08 – Electrical and Photometric Measurements of Solid-State Lighting Products
  • CIE TC2-46 – CIE/ISO standards on LED intensity measurements
  • CIE TC2-50 – Measurements of the optical properties of LED clusters and arrays
  • CIE TC2-58 – Measurements of LED radiance and illuminance
  • CIE TC2-63 – Optical measurements of high-power LEDs
  • CIE TC2-66 – Terminology of LEDs and LED assemblies

Tecnologia a LED per l’illuminazione:

  • G. Forcolini, Illuminazione LED, HOEPLI : Milano
  • AFE, LED ou lampes en éclairage public.De quoi s’agit-il?, in « Point de vue de l’AFE » numero 11 – 5 ottobre 2009
  • S. Onaygil, Ö. Güler and E. Erkin, LED TECHNOLOGIES IN ROAD LIGHTING, CIE convention in Budapest of 27-29 May 2009
  • L. Di Fraia (a cura di), Illuminazione a LED oggi: chimera o realtà?, convegno del 13 marzo 2009 all’ Università di Napoli Federico II
  • CSS Street Lighting Project, SL1/2007 – Review of the class and quality of street lighting
  • Guida di CieloBuio ai LED: 1^parte e 2^parte

Schede tecniche diodi power-LED:

Illuminazione in campo mesopico:

  • CIE, Mesopic photometry: history, special problems and pratical solutions, CIE Central Bureau CIE 81
  • Bullough, John D. and Mark S. Rea, Visual Performance Under Mesopic Conditions, TRB, National Research Council, 2004, Transportation Research Record: Journal of the Transportation Research Board
  • M. Eloholma, M. Viikari et al., Mesopic models – from brightness matching to visual performance in night-time driving: a review, Lighting Res. Technol. 37,2 (2005)
  • Y. He MS, A. Bierman MS and M. Rea PhD, A system of mesopic photometry, Lighting Res. Technol. 30,4 (1998)
  • Eloholma  M,  Halonen  L,  New  model  for  mesopic photometry  and  its  application  to  road lighting, LEUKOS 2(4):263-93
  • M. Eloholma,  J. Ketomäki,  P. Orreveteläinen  et  al., Visual  performance  in  night-time  driving conditions, Ophthal Physiol 25:1-10
  • A. Freiding, M. Eloholma, J. Ketomäki, et al., Mesopic visual efficiency I: Detection threshold measurements,  Lighting Res Technol. 39
  • H. Walkey, P. Orreveteläinen, J. Barbur, et al., Mesopic visual efficiency II: Reaction time experiments,  Lighting Res Technol. 39
  • G. Várady, A. Freiding, M. Eloholma, et al., Mesopic visual efficiency III: Discrimination threshold measurements,  Lighting Res Technol. 39
  • T Goodman, A Forbes, H Walkey, et al., Mesopic visual efficiency IV: A model with relevance to nighttime driving and other applications,  Lighting Res Technol. 39
  • CIE TC1-58 – Visual performance in the mesopic range
  • CIE TC2-65 – Photometric measurements in the mesopic range

Sicurezza dei sistemi LED:

  • G. C. Brainard , J. P. Hanifin, et al., Action spectrum for melatoninregulation in humans: evidence for a novel circadian photoreceptor, Journal of Neuroscience, 21(16).
  • G. Glickman, R. Levin, G. C. Brainard, Ocular Input for Human Melatonin Regulation: Relevance to Breast Cancer, Neuroendocrinology Letters, 23 (suppl 2)
  • E. Haus, M. Smolensky, Biological clocks and shift work: circadian dysregulation and potential long-term effects, Cancer Causes Control 17
  • K. Navara, J. Nelson, The dark side of light at night: physiological, epidemiological, and ecologicalconsequences, J. Pineal Res. 43
  • CIE TC6-55 – Photo-biological safety of LEDs

Segnala l’articolo:
____


Illuminazione di interni a LED – uffici e scuole

27 gennaio 2010 alle 11:23 am | Pubblicato su Illuminotecnica | 19 commenti
Tag: , , , , , , ,

n3egli articoli precedenti mi sono occupato dell’illuminazione stradale a LED, cercando di far comprendere come gli apparecchi LED per l’illuminazione stradale non sono così straordinari come si vuol far credere; da che mondo è mondo l’evoluzione tecnologica avanza sempre a piccoli passi: poco alla volta riusciremo ad avere prodottti più performanti delle vecchie tecnologie al sodio, ma non subito e nemmeno l’anno prossimo.

L’intervento di Alberto (vedi qui) ha invece ampliato il discorso anche all’illuminazione per interni. Da diverso tempo i produttori hanno messo a catalogo anche apparecchi per interni a LED; purtroppo anche in questo caso si riscontra spesso e volentieri la tendenza a “cavalcare l’onda” per riuscire a vendere il maggior numero di prodotti, che risultano spesso scadenti o comunque senza una seria progettazione illuminotecnica alle spalle.
Lo dimostra il fatto che gran parte degli apparecchi visti nei cataloghi sono semplici “customizzazioni” in cui alle sorgenti tradizionali sono state sostituite sorgenti a LED, senza tener conto delle peculiarità e dei vantaggi che queste potrebbero fornire in sede progettuale (estrema direzionalità, possibiltà di definire diverse aperture, ecc..).

1) Il compito visivo e i livelli di illuminamento

Uno dei parametri fondamentali cui fare riferimento nella progettazione illuminotecnica di interni è rappresentato dal livello di illuminamento (espresso in lux) sui vari piani di riferimento (cioè i piani su cui ha luogo il compito visivo preso in considerazione, come ad esempio il piano della scrivania); generalmente, questo viene considerato a 85 cm dalla quota pavimento (altezza media di un piano di lavoro).
I fattori che influenzano la scelta dipendono da una serie di condizioni al contorno definite in base al compito che si andrà a svolgere e che possono essere le dimensioni minime dei dettagli da riconoscere, il colore prevalente del compito visivo, l’età degli osservatori, ecc..

La norma europea UNI-EN 12464-1 definisce i valori di illuminamento medio  mantenuto richiesti sui luoghi di lavoro e pertanto costituisce un importante riferimento per i progettisti. Va notato che il livello di illuminamento non è il solo parametro di controllo indicato, perchè a questo si affiancano il rispetto dell’illuminamento nelle zone circostanti, la riduzione dell’abbagliamento molesto (fattore che va preso in seria considerazione per luci direzionali come quelle dei LED),  la resa cromatica ed eventualmente la temperatura di colore. Per un ulteriore approfondimento sui parametri da rispettare rimando all’articolo pubblicato da Giacomo Rossi su luxemozione a riguardo.

Per gli uffici si richiede generalmente un illuminamento medio di 500 lux (che può scendere a 300 per archivi e reception) con UGR di 19 e resa Ra di 80.

Per gli edifici scolastici le richieste sono più ampie (vista la diversità di spazi presenti) ; per le aule scolastiche si richiede un illuminamento medio di 300 lux con UGR di 19 e Ra di 80.

2) Il decadimento dell’impianto

L’efficienza di un impianto varia nel tempo in relazione alla riduzione del flusso luminoso emesso dalle sorgenti, all’eventuale rottura delle stesse, all’insudiciamento delle pareti dei locali e degli arredi, all’impolveramento degli apparecchi.

Per valutare il decadimento nell’efficienza dell’impianto viene così definito un fattore di manutenzione (MF) come: “Il rapporto tra l’illuminamento medio sul piano di lavoro dopo un certo periodo di uso dell’impianto (prima manutenzione) rispetto al valore medio dell’illuminamento ottenuto sotto le stesse condizioni quando l’impianto è nuovo” (IEC/CIE 17.4).
Questo si rivela essere un parametro di fondamentale importanza per la progettazione, in quanto, secondo la UNI EN 12464-1 il progettista deve:

  • stabilire il fattore di manutenzione ed elencare tutte le ipotesi richieste per la valutazione di questo valore;
  • specificare gli apparecchi di illuminazione adatti per l’ambiente;
  • preparare un programma completo di manutenzione in cui si devono indicare: la frequenza con cui si devono sostituire le lampade, gli intervalli di pulizia degli apparecchi di illuminazione e del locale, ed il metodo di pulizia più adeguato.

Per una valutazione adeguata del fattore di manutenzione si fa riferimento alla pubblicazione CIE 97/2-2005 “Maintenance of eletric indoor lighting systems”, la quale indica il fattore di manutenzione come prodotto di quattro parametri:

MF = LLMF x LSF x LMF x RSMF

in cui:

  • LLMF indica la riduzione del flusso speficia di una lampada nel corso della sua durata;
  • LSF indica la percentuale di lampade ancora funzionanti trascorso un certo intervallo di manutenzione;
  • LMF indica il calo di efficienza di un apparecchio dovuto alla sporcizia che si accumula trascorso un certo intervallo di manutenzione/pulizia;
  • RSMF indica il calo degli indici di riflessione delle superfici perimetrali, dovuto alla sporcizia che si accumula trascorso un certo intervallo di manutenzione/pulizia.

Generalmeste si consiglia di adottare un fattore di manutenzione basso poichè, in realtà, operazioni quali la pulizia degli apparecchi o la sostituzione delle lampade avvengono molto di rado.

Per quanto riguarda il parametro LMF di seguito si riportano i valori più comuni in base al tipo di installazione, al tempo trascorso fra due intervalli di manutenzione, alla pulizia del locale:

Valori raccomandati per LMF

Per quanto riguarda il parametro RSFM occorre innanzitutto introdurre un nuovo parametro, chiamato indice del locale, definito come:

in cui:

  • a è la lunghezza del locale
  • b è la larghezza del locale
  • hu è l’altezza utile, definita come distanza fra apparecchio e piano di lavoro

Definito K è possibile utilizzare la tabella seguente:

Valori raccomandati per RSMF

Per quanto riguarda invece i valori di LLMF e LSF il discorso si fa più arduo; per le lampade tradizionali è possibile derivare questi valori da tabelle più o meno standard, come la seguente:

Valori raccomandati per LLMF e LSF

Ovviamente, qualora sia prevista la singola sostituzione delle sorgenti (ad esempio per la sostituzione di un tubo al neon prima che questo esaurisca la sua vita utile) è possibile adottare LSF = 1.

Per le sorgenti a LED la determinazione della “vita utile” e dei vari parametri di LLMF durante il ciclo di vita appare più problematica, come già ho avuto modo di discutere (vedi la prima parte degli articoli sui LED).
Se prendiamo in considerazione il parametro standard di valutazione dei diodi LED (cioè la valutazione di fine vita come L70) allora avremmo LLMF=0,7; nel caso in cui volessimo un parametro più alto sarà necessario considerare una vita utile inferiore alle 50000 ore dichiarate (ma in questo caso non si comprenderebbe il vantaggio dei LED).
Inoltre nel caso in cui si utilizzino moduli LED intercambiabili e sostituibili all’interno dell’apparecchio allora anche in questo caso avremo LSF=1, altrimenti occorrerebbe sapere la mortalità dei diodi LED all’interno di un modulo per calcolare anche questo valore.

3) Metodo del flusso totale

Una volta che il progettista ha definito le tipologie di apparecchi impiegati e il tipo di manutenzione da adottare affinchè il sistema rimanga efficiente, è possibile definire il numero di apparecchi necessari attraverso il metodo tradizionale del flusso totale CIE.

Questo metodo si avvale del cosiddetto fattore di utilizzazione dell’apparecchio (Fu), che indica in sostanza quanta luce emessa dalla sorgente arriva sul piano di lavoro stabilito (perchè una parte della luce emessa verrà persa per le riflessioni interne, per l’assorbimento da parte delle pareti, ecc..).
Il fattore di utilizzazione degli apparecchi viene tabellato dai produttori in base all’indice del locale e ai coefficienti di riflessione delle pareti e del soffitto, come nell’esempio seguente:

Alcuni fattori di utilizzazione per diverse tipologie di apparecchi

Per l’indice del locale si ricorre alla formula vista sopra, per i coefficienti di riflessione è possibile utilizzare la tabella seguente:

Coefficienti di riflessione

Una volta definito il fattore di utilizzazione, è quindi possibile calcolare il flusso luminoso utile totale  necessario per la corretta illuminazione del locale attraverso la formula:

in cui:

  • E è l’illuminamento medio definito dalla UNI EN 12464-1
  • A è l’area del locale
  • Fu è il fattore di utilizzazione, come visto sopra
  • MF è il fattore di manutenzione, come visto sopra

Il valore che si ottiene indica il flusso luminoso totale che le sorgenti presenti all’interno dell’apparecchio devono avere per poter illuminare correttamente il locale: se si divide questo parametro per il flusso di una singola sorgente, si otterrà il numero di sorgenti necessarie; se si divide per il numero di apparecchi che si vuole utilizzare, si otterrà il flusso minimo che le sorgenti all’interno dell’apparecchio illuminante devono fornire.

Ovviamente il calcolo così effettuato è un calcolo di massima, che  dovrebbe poi essere verificato con programmi illuminotecnici dedicati.

Esempio di calcolo con DIALux

4) Calcolo dell’abbagliamento: curve di Sollner e UGR

Fino all’introduzione dell’indice unificato di abbagliamento (o UGR) dalla norma UNI EN 12464-1, il sistema maggiormente utilizzato per la valutazione dell’abbagliamento negli interni fa riferimento al metodo delle curve limite CIE (o diagramma di Sollner). Questo metodo si basa sulle ricerce empiriche di Sollner, che legano il fattore di abbagliamento alla luminanza degli apparecchi verso l’osservatore, alla dimensione della stanza e al livello di illuminamento presente.
La valutazione avviene pertanto tramite un grafico che mette in relazione cinque classi di qualità (A,B,C,D,E) a seconda del grado di impegno richiesto dal compito visivo che si svolge all’interno del locale (tutti i locali per ufficio e scolastici rientrano nella classe B tranne per il caso di lavoro ai videoterminali per cui si prevede la classe A) e l’illuminamento presente sul piano di lavoro.

Esempio di diagramma di Sollner per apparecchio senza schermi laterali

Una volta individuata la classe di qualità e l’illuminamento medio sul piano di lavoro, si trova la corrispondente curva limite CIE e quindi si calcolano i valori di luminanza dell’apparecchio per le direzioni di emissione relative ai posti di lavoro del locale in oggetto e si controllo che i valori ottenuti risultino inferiori a quelli indicati dalla curva limite del diagramma per le direzioni corrispondenti. Questo metodo assume calidità per gli apparecchi di illuminazione “visti” da ogni operatore sotto un angolo uguale o inferiore a 45° rispetto all’orizzonte dell’osservatore.

L’UGR invece è un indice unificato in campo internazionale sviluppato dalla CIE per la determinazione dell’abbagliamento diretto ed è stato introdotto dalla norma per l’illuminazione degli interni UNI EN 12464-1 a sostituzione della classe di qualità G della vecchia norma UNI 10380, che impiegava le curve limite di luminanza o diagramma di Sollner.
Il valore dell’UGR dipende dalla posizione dell’osservatore rispetto all’impianto, dalla luminanza del singolo apparecchio, dalla dimensione dell’installazione e dell’ambiente e dallo sfondo in cui sono collocati i corpi luminosi. Oscilla tra valori da 10 (nessun abbagliamento) a 30 (abbagliamento fisiologico considerevole) secondo una scala di 3 unità (10,13,16,19,22,25 e 28). Naturalmente più sarà basso il valore e minore sarà l’abbagliamento diretto.
Anche se l’UGR presenta alcune limitazioni applicative (ad esempio non viene definito per apparecchi con componente indiretta superiore al 65%) e non è mai stato universalmente accettato, è un parametro comunque da rispettare e va attentamente calibrato tramite software di calcolo (esiste anche un metodo manuale, ma mi sembra oltremodo brigoso).
Per un approfondimento sull’UGR vi rimando all’ articolo su luxemozione: generalmente un apparecchio con valori di UGR inferiori a 19 avrà un comfort visivo ottimale per l’impiego su postazioni lavoro, aule scolastiche, sale lettura, ma non in quelle situazioni dove il limite massimo è 16, vedi i piani di lavoro per disegno tecnico.

5) Scelta dell’apparecchio

Per ottenere il rispetto dei valori indicati dalla normativa (fra cui i più importanti sono il livello di illuminamento medio e controllo dell’abbagliamento) ma anche una buona visione (per cui non indifferente rimane il controllo dell’uniformità, la resa cromatica, la temperatura di colore, ecc..) la scelta dell’apparecchio rimane la discriminante fondamentale.
Considerando che le direzioni critiche per l’abbagliamento sono quelle superiori all’angolo di 45° dall’orizzontale, è necessario adottare apparecchi che abbiano un totale controllo ottico del fascio, senza penalizzare troppo il rendimento complessivo.
Gli apparecchi con tubi fluorescenti necessitano di un controllo longitudinale: per questo motivo generalmente sono dotati di traversini d’alluminio che schermano la lampada ed ottimizzano l’emissione (questo tipo di ottica viene definita “alveolare”).

Plafoniera "alveolare" per tubi fluorescenti

Un apparecchio a LED invece non dovrebbe necessitare di particolari schermature, in quanto la curva fotometrica viene creata generalmente direzionando in modo opportuno i singoli diodi, al fine di evitare zone di abbagliamento; per questi motivi la costruzione di un apparecchio a LED su cui però vengono montate barre che ricalcano un tubo fluorescente appare quanto mai anomalo: si uniscono gli svantaggi di una sorgente monodirezionale (all’interno del tubo tutti i LED sono allineati allo stesso modo) agli svantaggi del controllo dell’abbagliamento (queste sorgenti vanno comunque schermate, perdendo di rendimento).
A mio parere quindi un apparecchio a LED dovrebbe piuttosto ricalcare la fisionomia degli apparecchi a “luce morbida” (in cui diversi rifrattori consentono di distribuire uniformemente il flusso su una superficie più allargata) e sfruttare la capacità direzionale di ogni diodo LED senza l’ausilio di schermature o riflettori.

Plafoniera a LED a "luce morbida"

Ad ogni modo, le ottiche più diffuse per l’illuminazione di uffici e scuole sono le cosiddette “batwing”, poichè in genere è consigliabile scegliere ottiche che limitano l’emissione nell’intorno dei 25° e che diano la massima inensità tra 30° e 45° (nel caso di uffici senza videoterminali ovviamente, poichè questi richiedono ottiche specifiche, che limitino l’abbagliamento riflesso); inoltre  per la schermatura si scelgono ottiche “darklight” (che limitano la luminanza a 200 cd/mq al di sopra dei 60° dalla verticale).

6) Base di confronto

Dai cataloghi dei vari produttori è possibile vedere che una lampada fluorescente lineare modello T5 (16mm di diametro) hanno un’efficienza luminosa superiore ai 95 lm/W con una vita media di circa 20000 ore (LSF=0,5) a LLMF=0,9; le lampade fluorescenti lineari modello T8 (26mm di diametro) hanno un’efficienza luminosa superiore ai 90 lm/W con una vita media di circa 12000 ore (LSF=0,5) a LLMF=0,9.

Una plafoniera a incasso ha un’efficienza LOR=0,50-0,70 a seconda delle applicazioni (questo significa che dal 30% al 50% del flusso luminoso emesso dalla lampada non viene utilizzato); una plafoniera a sospensione può avere anche LOR=0,80 nel caso in cui sia aperta superiormente (ma in questo caso parte del flusso luminoso è impiegato come illuminazione indiretta).

Da quanto detto, si può notare come la limitazione al flusso emesso è data in gran parte dalle caratteristiche dell’apparecchio illluminante, che dovendosi servire di riflettori e schermi, non è molto efficiente: a maggior ragione appare quindi conveniente l’adozione di sistemi a LED senza ottiche secondarie (visto che l’efficienza di un power-led è comparabile a quella delle lampade fluorescenti e che l’inserimento in una plafoniera con le medesime perdite porterebbe a risultati illuminotecnici comparabili).

7) Case studies

Visto che l’argomento è recente, questa sezione verrà completata di volta in volta coi progetti che potrete inviarmi e che confronterò con sistemi tradizionali.

Segnala l’articolo:
____


Pagina successiva »

Blog su WordPress.com. | The Pool Theme.
Voci e commenti feeds.

Iscriviti

Ricevi al tuo indirizzo email tutti i nuovi post del sito.

Unisciti agli altri 124 follower